A chemiresistive sensor is described for the lung cancer biomarker hexanal. A composite consisting of molecularly imprinted polymer nanoparticles and multiwalled carbon nanotubes was used in the sensor that is typically operated at a voltage of 4 V and is capable of selectively sensing gaseous hexanal at room temperature. It works in the 10 to 200 ppm concentration range and has a 10 ppm detection limit (at S/N = 3). The sensor signal recovers to a value close to its starting value without the need for heating even after exposure to relatively high levels of hexanal. Graphical abstract Schematic presentation of a chemiresistive sensor for detection of hexanal, a cancer biomarker. The hexanal-imprinted polymeric nanoparticles were synthesized, mixed with multiwalled carbon nanotubes and coated on the surface of an interdigitated electrode to produce a nanocomposite chemiresistor gas sensor for hexanal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00604-019-3241-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!