Nucleic acid aptamers are single stranded DNA or RNA sequences that specifically bind a cognate ligand. In addition to their widespread use as stand-alone affinity binding reagents in analytical chemistry, aptamers have been engineered into a variety of ligand-specific biosensors, termed aptasensors. One of the most common aptasensor formats is the duplexed aptamer (DA). As defined herein, DAs are aptasensors containing two nucleic acid elements coupled via Watson-Crick base pairing: (i) an aptamer sequence, which serves as a ligand-specific receptor, and (ii) an aptamer-complementary element (ACE), such as a short DNA oligonucleotide, which is designed to hybridize to the aptamer. The ACE competes with ligand binding, such that DAs generate a signal upon ligand-dependent ACE-aptamer dehybridization. DAs possess intrinsic advantages over other aptasensor designs. For example, DA biosensing designs generalize across DNA and RNA aptamers, DAs are compatible with many readout methods, and DAs are inherently tunable on the basis of nucleic acid hybridization. However, despite their utility and popularity, DAs have not been well defined in the literature, leading to confusion over the differences between DAs and other aptasensor formats. In this review, we introduce a framework for DAs based on ACEs, and use this framework to distinguish DAs from other aptasensor formats and to categorize cis- and trans-DA designs. We then explore the ligand binding dynamics and chemical properties that underpin DA systems, which fall under conformational selection and induced fit models, and which mirror classical SN1 and SN2 models of nucleophilic substitution reactions. We further review a variety of in vitro and in vivo applications of DAs in the chemical and biological sciences, including riboswitches and riboregulators. Finally, we present future directions of DAs as ligand-responsive nucleic acids. Owing to their tractability, versatility and ease of engineering, DA biosensors bear a great potential for the development of new applications and technologies in fields ranging from analytical chemistry and mechanistic modeling to medicine and synthetic biology.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c8cs00880aDOI Listing

Publication Analysis

Top Keywords

nucleic acid
12
aptasensor formats
12
das
11
dna rna
8
analytical chemistry
8
ligand binding
8
das aptasensor
8
duplexed aptamers
4
aptamers history
4
history design
4

Similar Publications

Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) and transfer RNA-derived stress-induced RNAs (tiRNAs) have emerged as crucial players in the post-transcriptional regulation of gene expression in various cellular processes, including immunity and host defense against infections. In recent years, increasing evidence has highlighted their complex role in influencing the host response during viral and bacterial infections. miRNAs have been shown to play multiple roles in host-pathogen interaction like TLR activation and altered disease virulence during bacterial infections.

View Article and Find Full Text PDF

CircRNAs in extracellular vesicles associated with triple-negative breast cancer.

Cell Mol Biol (Noisy-le-grand)

January 2025

Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh-11623, Saudi Arabia.

Article Synopsis
  • Triple-negative breast cancer (TNBC) is an aggressive form of cancer that often spreads to distant sites in the body, and understanding how it metastasizes is crucial for treatment.
  • Exosomes, which are small extracellular vesicles that carry RNA molecules, play a significant role in TNBC metastasis and present new opportunities for diagnosing and treating the disease via liquid biopsy.
  • Circular RNAs (circRNAs), a subtype of noncoding RNAs found in exosomes, can influence gene expression and are abundant in EVs; they may enhance communication between cancer cells, thereby influencing TNBC progression and offering potential biomarkers for prognosis and monitoring.
View Article and Find Full Text PDF

Seroprevalence of specific antibodies to Treponema pallidum in blood donors with DNA confirmation of seropositivity.

Cell Mol Biol (Noisy-le-grand)

January 2025

Swedish Board Member of General Surgery, Kurdistan Higher Council of Medical Specialties, Erbil, Iraq.

The rising global incidence of syphilis underscores the risk of transmission through blood transfusions. Treponema pallidum, the pathogen responsible for syphilis, represents a major public health challenge. Accurate detection is essential for controlling the disease, particularly in asymptomatic blood donors.

View Article and Find Full Text PDF

Clinical and molecular analysis of ESBL, carbapenemase, and colistin-resistant bacteria in UTI patients.

Cell Mol Biol (Noisy-le-grand)

January 2025

Jiangxi Key Laboratory of Oncology (2024SSY06041), Jiangxi Cancer Hospital & Institute, The Second Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi, 330029, P.R. China.

Uropathogens, particularly bacteria, can infect any part of the urinary tract and cause bacteriuria. Our study aimed to examine the antibiotic-resistant profile, associated risk factors, and phenotypic and genotypic features of ESBL, carbapenemase, and mcr resistance genes in multidrug-resistant bacteria. Samples were inoculated on culture media, identified using standard biochemical tests, and species confirmation was performed via 16S rRNA gene amplification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!