Zirconium-Based Metal-Organic Frameworks for the Removal of Protein-Bound Uremic Toxin from Human Serum Albumin.

J Am Chem Soc

Department of Chemistry and International Institute of Nanotechnology , Northwestern University, 2145 Sheridan Road , Evanston , Illinois 60208 , United States.

Published: February 2019

Uremic toxins often accumulate in patients with compromised kidney function, like those with chronic kidney disease (CKD), leading to major clinical complications including serious illness and death. Sufficient removal of these toxins from the blood increases the efficacy of hemodialysis, as well as the survival rate, in CKD patients. Understanding the interactions between an adsorbent and the uremic toxins is critical for designing effective materials to remove these toxic compounds. Herein, we study the adsorption behavior of the uremic toxins, p-cresyl sulfate, indoxyl sulfate, and hippuric acid, in a series of zirconium-based metal-organic frameworks (MOFs). The pyrene-based MOF, NU-1000, offers the highest toxin removal efficiency of all the MOFs in this study. Other Zr-based MOFs possessing comparable surface areas and pore sizes to NU-1000 while lacking an extended aromatic system have much lower toxin removal efficiency. From single-crystal X-ray diffraction analyses assisted by density functional theory calculations, we determined that the high adsorption capacity of NU-1000 can be attributed to the highly hydrophobic adsorption sites sandwiched by two pyrene linkers and the hydroxyls and water molecules on the Zr nodes, which are capable of hydrogen bonding with polar functional groups of guest molecules. Further, NU-1000 almost completely removes p-cresyl sulfate from human serum albumin, a protein that these uremic toxins bind to in the body. These results offer design principles for potential MOFs candidates for uremic toxin removal.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jacs.8b12525DOI Listing

Publication Analysis

Top Keywords

uremic toxins
16
toxin removal
12
zirconium-based metal-organic
8
metal-organic frameworks
8
uremic toxin
8
human serum
8
serum albumin
8
p-cresyl sulfate
8
removal efficiency
8
uremic
6

Similar Publications

The Gut-Kidney Axis in Chronic Kidney Diseases.

Diagnostics (Basel)

December 2024

Department of Nephrology, Rheumatology, Endocrinology and Metabolism, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Okayama 700-8558, Japan.

The gut-kidney axis represents the complex interactions between the gut microbiota and kidney, which significantly impact the progression of chronic kidney disease (CKD) and overall patient health. In CKD patients, imbalances in the gut microbiota promote the production of uremic toxins, such as indoxyl sulfate and p-cresyl sulfate, which impair renal function and contribute to systemic inflammation. Mechanisms like endotoxemia, immune activation and oxidative stress worsen renal damage by activating pro-inflammatory and oxidative pathways.

View Article and Find Full Text PDF

Background: The optimal timing for initiating dialysis and prognostic markers in chronic kidney disease (CKD) patients are under debate, with mortality and cardiovascular risks varying among patients. This study investigates whether the apoptosis inhibitor of macrophage (AIM), which is mostly bound to pentameric IgM, could serve as an effective indicator.

Methods: We prospectively followed 423 patients at dialysis initiation and 563 at various CKD stages.

View Article and Find Full Text PDF

Rationale & Objective: Peritoneal dialysis (PD) solutions provide both clearance of uremic toxins and sodium and water. An intraperitoneal (IP) solution of icodextrin and glucose designed without the requirement for uremic toxin clearance could provide substantially greater sodium and water removal than PD solutions.

Study Design: We examined varying concentrations of icodextrin and dextrose IP solutions in rats.

View Article and Find Full Text PDF

Background: The KDIGO recommendation in acute kidney injury (AKI) patients requiring kidney replacement therapy is to deliver a Urea Kt/V of 1.3 for intermittent thrice weekly hemodialysis, and an effluent volume of 20-25 ml/kg/hour when using continuous renal replacement therapy (CRRT). Considering that prior studies have suggested equivalent outcomes when using CRRT-prolonged intermittent renal replacement therapy (PIRRT) effluent doses below 20 mL/kg/h, our group investigated the possible benefits of low effluent volume CRRT-PIRRT (12.

View Article and Find Full Text PDF

Indoxyl Sulfate and Its Potential Role in Mineralocorticoid Receptor Transactivation in Chronic Kidney Disease.

Cureus

December 2024

Department of Endocrinology, Metabolism, Rheumatology and Nephrology, Faculty of Medicine, Oita University, Yufu, JPN.

Background: The uremic toxin indoxyl sulfate (IS) is an important factor in chronic kidney disease (CKD) progression. Inhibitors of the renin-angiotensin system and add-on therapy with mineralocorticoid receptor (MR) antagonists can help reduce proteinuria and suppress CKD progression. However, the association between IS and MR activation remains unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!