Human recorded history is littered with attempts to improve the perceived appearance of scalp hair. Throughout history, treatments have included both biological and chemical interventions. Hair "quality" or "perceived appearance" is regulated by multiple biological intervention opportunities: adding more hairs by flipping follicles from telogen to anagen, or delaying anagen follicles transiting into catagen; altering hair "apparent amount" by modulating shaft diameter or shape; or, in principle, altering shaft physical properties changing its synthesis. By far the most common biological intervention strategy today is to increase the number of hairs, but to date this has proven difficult and has yielded minimal benefits. Chemical intervention primarily consists of active material surface deposition to improve shaft shine, fibre-fibre interactions and strength. Real, perceptible benefits will best be achieved by combining opportunity areas across the three primary sciences: biology, chemistry and physics. Shaft biogenesis begins with biology: proliferation in the germinative matrix, then crossing "Auber's Critical Line" and ceasing proliferation to synthesize shaft components. Biogenesis then shifts to oxidative chemistry, where previously synthesized components are organized and cross-linked into a shaft. We herein term the crossing point from biology to chemistry as "The Orwin Threshold." Historically, hair biology and chemistry have been conducted in different fields, with biological manipulation residing in biomedical communities and hair shaft chemistry and physics within the consumer care industry, with minimal cross-fertilization. Detailed understanding of hair shaft biogenesis should enable identification of factors necessary for optimum hair shaft production and new intervention opportunities.

Download full-text PDF

Source
http://dx.doi.org/10.1111/exd.13898DOI Listing

Publication Analysis

Top Keywords

biology chemistry
12
hair shaft
12
shaft
9
hair
8
biological intervention
8
intervention opportunities
8
chemistry physics
8
shaft biogenesis
8
chemistry
5
wanted dead
4

Similar Publications

Characterization and formation of the biomineral aragonite structures of the Noah's Ark shell ( L.,1758) were studied from structural, morphogenetic, and biochemical points of view. Structural and morphological features were examined using X-ray diffraction, field-emission scanning electron microscopy, and atomic force microscopy, while thermal properties were determined by thermogravimetric and differential thermal analyses.

View Article and Find Full Text PDF

Dual Pathways of Photorelease Carbon Monoxide via Photosensitization for Tumor Treatment.

J Am Chem Soc

January 2025

State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin 300071, P. R. China.

Carbon monoxide (CO) gas therapy, as an emerging therapeutic strategy, is promising in tumor treatment. However, the development of a red or near-infrared light-driven efficient CO release strategy is still challenging due to the limited physicochemical characteristics of the photoactivated carbon monoxide-releasing molecules (photoCORMs). Here, we discovered a novel photorelease CO mechanism that involved dual pathways of CO release via photosensitization.

View Article and Find Full Text PDF

Fatuamide A, a Hybrid PKS/NRPS Metallophore from a sp. Marine Cyanobacterium Collected in American Samoa.

J Nat Prod

January 2025

Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, United States.

A structurally novel metabolite, fatuamide A (), was discovered from a laboratory cultured strain of the marine cyanobacterium sp., collected from Faga'itua Bay, American Samoa. A bioassay-guided approach using NCI-H460 human lung cancer cells directed the isolation of fatuamide A, which was obtained from the most cytotoxic fraction.

View Article and Find Full Text PDF

Inosine 5'-monophosphate dehydrogenase (IMPDH) is a promising antibiotic target. This enzyme catalyzes the NAD-dependent oxidation of inosine 5'-monophosphate (IMP) to xanthosine 5'-monophosphate (XMP), which is the rate-limiting step in guanine nucleotide biosynthesis. Bacterial IMPDH-specific inhibitors have been developed that bind to the NAD site.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!