Design and Assembly of CRISPR/Cas9 Lentiviral and rAAV Vectors for Targeted Genome Editing.

Methods Mol Biol

Department of Translational Science & Molecular Medicine, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA.

Published: July 2019

Clustered regularly interspaced short palindromic repeat (CRISPR/Cas) system has emerged as an extremely useful tool for biological research and as a potential technology for gene therapy approaches. CRISPR/Cas mediated genome editing can be used to easily and efficiently modify endogenous genes in a large variety of cells and organisms. Furthermore, a modified version of the Cas9 nuclease has been developed that can be used for regulation of endogenous gene expression and labeling of genomic loci, among other applications. This chapter provides an introduction to the basis of the technology and a detail protocol for the most classic application: gene inactivation by CRISPR/Cas9 nuclease system from Streptococcus pyogenes. This workflow can be easily adapted for other CRISPR systems and applications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-4939-9065-8_2DOI Listing

Publication Analysis

Top Keywords

genome editing
8
design assembly
4
assembly crispr/cas9
4
crispr/cas9 lentiviral
4
lentiviral raav
4
raav vectors
4
vectors targeted
4
targeted genome
4
editing clustered
4
clustered regularly
4

Similar Publications

Cascade-Responsive Nanoparticles for Efficient CRISPR/Cas9-Based Glioblastoma Gene Therapy.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Functional Polymer Materials of Ministry of Education, College of Chemistry, Nankai University, Tianjin 300071, China.

CRISPR/Cas9 (CRISPR, clustered regularly interspaced short palindromic repeats) gene editing technology represents great promise for treating glioblastoma (GBM) due to its potential to permanently eliminate tumor pathogenic genes. Unfortunately, delivering CRISPR to the GBM in a safe and effective manner is challenging. Herein, a glycosylated and cascade-responsive nanoparticle (GCNP) that can effectively cross the blood-brain barrier (BBB) and activate CRISPR/Cas9-based gene editing only in the GBM is designed.

View Article and Find Full Text PDF

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Cystic Fibrosis (CF) is a life-shortening autosomal recessive disease caused by mutations in the CFTR gene, resulting in functional impairment of the encoded ion channel. F508del mutation, a trinucleotide deletion, is the most frequent cause of CF affecting approximately 80% of persons with cystic fibrosis (pwCFs). Even though current pharmacological treatments alleviate the F508del-CF disease symptoms there is no definitive cure.

View Article and Find Full Text PDF

Focused Ultrasound and Microbubble-Mediated Delivery of CRISPR-Cas9 Ribonucleoprotein to Human Induced Pluripotent Stem Cells.

Mol Ther

January 2025

Department of Biology, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada; Department of Physics, Concordia University, 7141 Sherbrooke St. W H4B 1R6, Montreal, Canada. Electronic address:

CRISPR-Cas9 ribonucleoproteins (RNPs) have been heavily considered for gene therapy due to their high on-target efficiency, rapid activity and lack of insertional mutagenesis relative to other CRISPR-Cas9 delivery formats. Genetic diseases such as hypertrophic cardiomyopathy currently lack effective treatment strategies and are prime targets for CRISPR-Cas9 gene editing technology. However, current in-vivo delivery strategies for Cas9 pose risks of unwanted immunogenic responses.

View Article and Find Full Text PDF

: Cellular biobanks are of great interest for performing studies finalized in the development of personalized approaches for genetic diseases, including β-thalassemia and sickle cell disease (SCD), important diseases affecting the hematopoietic system. These inherited genetic diseases are characterized by a global distribution and the need for intensive health care. The aim of this report is to present an update on the composition of a cellular Thal-Biobank, to describe its utilization since 2016, to present data on its application in studies on fetal hemoglobin induction and on gene editing, and to discuss its employment as a "unique tool" during and after the COVID-19 pandemic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!