This study evaluates the accuracy of a computer-aided detection (CAD) application for pulmonary nodular lesions (PNL) in computed tomography (CT) scans, the ClearReadCT (Riverain Technologies). The study was retrospective for 106 biopsied PNLs from 100 patients. Seventy-five scans were Contrast-Enhanced (CECT) and 25 received no enhancer (NECT). Axial reconstructions in soft-tissue and lung kernel were applied at three different slice thicknesses, 0.75 mm (CECT/NECT n = 25/6), 1.5 mm (n = 18/9) and 3.0 mm (n = 43/18). We questioned the effect of (1) enhancer, (2) kernel and (3) slice thickness on the CAD performance. Our main findings are: (1) Vessel suppression is effective and specific in both NECT and CECT. (2) Contrast enhancement significantly increased the CAD sensitivity from 60% in NECT to 80% in CECT, P = 0.025 Fischer's exact test. (3) The CAD sensitivity was 84% in 3 mm slices compared to 68% in 0.75 mm slices, P > 0.2 Fischer's exact test. (4) Small lesions of low attenuation were detected with higher sensitivity. (5) Lung kernel reconstructions increased the false positive rate without affecting the sensitivity (P > 0.05 McNemar's test). In conclusion, ClearReadCT showed an optimized sensitivity of 84% and a positive predictive value of 67% in enhanced lung scans with thick, soft kernel reconstructions. NECT, thin slices and lung kernel reconstruction were associated with inferior performance.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10916-019-1180-1DOI Listing

Publication Analysis

Top Keywords

lung kernel
12
computer-aided detection
8
computed tomography
8
cad sensitivity
8
fischer's exact
8
exact test
8
sensitivity 84%
8
kernel reconstructions
8
kernel
5
sensitivity
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!