We evaluate the utility of providing a pulsatile blood flow by applying off-pump coronary artery bypass grafting (CABG) or intra-aortic balloon pumping (IABP) with conventional CABG to prevent perioperative stroke in patients with cerebral hypoperfusion on single-photon emission-computed tomography (SPECT). A total of 286 patients underwent isolated CABG with a cerebral magnetic resonance angiography (MRA) evaluation between 2006 and 2015. Seventy-five had significant stenosis and/or occlusion of craniocervical vessels; the other 211 had no significant stenosis. Cerebral SPECT was performed for 49 (SPECT group) of the 75 patients. The SPECT group was further divided into a normal perfusion (NP) (n = 37); and a hypoperfusion (HP) (n = 12). In the present study we compared the NP group and the 211 patients with no significant stenosis (as a control group) to the HP group. No strokes occurred in the HP group, and 1 stroke occurred at the time of operation in the control group. Postoperative stroke within 30 days occurred in 3 patients in the control group; the difference was not statistically significant. The long-term stroke-free rates of the HP and Control group did not differ to a statistically significant extent. The functional evaluation of cerebral perfusion by SPECT is important when patients have significant stenotic lesions on cerebral MRA. Maintaining an adequate pulsatile flow by off-pump CABG or IABP with conventional CABG will help prevent perioperative stroke, even if cerebral hypoperfusion is detected by SPECT.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00380-019-01348-7DOI Listing

Publication Analysis

Top Keywords

control group
16
group
9
functional evaluation
8
evaluation cerebral
8
cerebral perfusion
8
coronary artery
8
artery bypass
8
bypass grafting
8
iabp conventional
8
conventional cabg
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!