Despite intensive treatments including temozolomide (TMZ) administration, glioblastoma patient prognosis remains dismal and innovative therapeutic strategies are urgently needed. A systems pharmacology approach was undertaken to investigate TMZ pharmacokinetics-pharmacodynamics (PK-PD) incorporating the effect of local pH, tumor spatial configuration and micro-environment. A hybrid mathematical framework was designed coupling ordinary differential equations describing the intracellular reactions, with a spatial cellular automaton to individualize the cells. A differential drug impact on tumor and healthy cells at constant extracellular pH was computationally demonstrated as TMZ-induced DNA damage was larger in tumor cells as compared to normal cells due to less acidic intracellular pH in cancer cells. Optimality of TMZ efficacy defined as maximum difference between damage in tumor and healthy cells was reached for extracellular pH between 6.8 and 7.5. Next, TMZ PK-PD in a solid tumor was demonstrated to highly depend on its spatial configuration as spread cancer cells or fragmented tumors presented higher TMZ-induced damage as compared to compact tumor spheroid. Simulations highlighted that smaller tumors were less acidic than bigger ones allowing for faster TMZ activation and their closer distance to blood capillaries allowed for better drug penetration. For model parameters corresponding to U87 glioma cells, inter-cell variability in TMZ uptake play no role regarding the mean drug-induced damage in the whole cell population whereas this quantity was increased by inter-cell variability in TMZ efflux which was thus a disadvantage in terms of drug resistance. Overall, this study revealed pH as a new potential target to significantly improve TMZ antitumor efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6349072 | PMC |
http://dx.doi.org/10.1002/prp2.454 | DOI Listing |
Mil Med
January 2025
Department of Rheumatology, VA Medical Center Memphis, TN 38104, USA.
Introduction: Patients with chronic inflammatory diseases are often treated with pharmacologic therapies that target the immune system and have an increased risk of infection. These risks can be reduced by vaccination against common pathogens. This quality improvement project aimed to increase pneumococcal and herpes zoster vaccination rates in patients with chronic inflammatory disease on biologic immunosuppressive therapy.
View Article and Find Full Text PDFRheumatol Ther
January 2025
Department of Internal Medicine 3, Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany.
Introduction: Prescribable digital health applications (DiGAs) present scalable solutions to improve patient self-management in rheumatology, however real-world evidence is scarce. Therefore, we aimed to assess the effectiveness, usage, and usability of DiGAs prescribed by rheumatologists, as well as patient satisfaction.
Methods: The DiGAReal registry includes adult patients with rheumatic conditions who received a DiGA prescription.
Discov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Department of Internal Medicine, Faculty of Medicine, Urmia University of Medical Sciences, Imam Khomeini Hospital, Urmia, Iran.
Inflammatory Bowel Disease (IBD) is a persistent ailment that impacts many individuals worldwide. The interaction between the immune system and gut microbiome is thought to influence IBD development. This study aimed to assess some microbiota in IBD patients compared to healthy individuals.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Centre for Research Impact & Outcome-Chitkara College of Pharmacy, Chitkara University, Punjab, India.
Chemotherapy resistance (CR) represents one of the most important barriers to effective oncological therapy and often leads to ineffective intervention and unfavorable clinical prognosis. Emerging studies have emphasized the vital significance of extracellular RNA (exRNA) in influencing CR. This thorough assessment intends to explore the multifaceted contributions of exRNA, such as exosomal RNA, microRNAs, long non-coding RNAs, and circular RNAs, to CR in cancer.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!