Multi-Method Characterization of the Human Circulating Microbiome.

Front Microbiol

School of Life Sciences, Faculty of Natural Sciences, Keele University, Keele, United Kingdom.

Published: January 2019

The term microbiome describes the genetic material encoding the various microbial populations that inhabit our body. Whilst colonization of various body niches (e.g., the gut) by dynamic communities of microorganisms is now universally accepted, the existence of microbial populations in other "classically sterile" locations, including the blood, is a relatively new concept. The presence of bacteria-specific DNA in the blood has been reported in the literature for some time, yet the true origin of this is still the subject of much deliberation. The aim of this study was to investigate the phenomenon of a "blood microbiome" by providing a comprehensive description of bacterially derived nucleic acids using a range of complementary molecular and classical microbiological techniques. For this purpose we utilized a set of plasma samples from healthy subjects ( = 5) and asthmatic subjects ( = 5). DNA-level analyses involved the amplification and sequencing of the 16S rRNA gene. RNA-level analyses were based upon the assembly of unmapped mRNA reads and subsequent taxonomic identification. Molecular studies were complemented by viability data from classical aerobic and anaerobic microbial culture experiments. At the phylum level, the blood microbiome was predominated by , , , and . The key phyla detected were consistent irrespective of molecular method (DNA vs. RNA), and consistent with the results of other published studies. comparison of our data with that of the Human Microbiome Project revealed that members of the blood microbiome were most likely to have originated from the oral or skin communities. To our surprise, aerobic and anaerobic cultures were positive in eight of out the ten donor samples investigated, and we reflect upon their source. Our data provide further evidence of a core blood microbiome, and provide insight into the potential source of the bacterial DNA/RNA detected in the blood. Further, data reveal the importance of robust experimental procedures, and identify areas for future consideration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345098PMC
http://dx.doi.org/10.3389/fmicb.2018.03266DOI Listing

Publication Analysis

Top Keywords

blood microbiome
12
microbial populations
8
aerobic anaerobic
8
microbiome
6
blood
6
multi-method characterization
4
characterization human
4
human circulating
4
circulating microbiome
4
microbiome term
4

Similar Publications

Colon cancer is a leading cause of cancer-related deaths worldwide and has been increasingly linked to the gut microbiome. Clostridium butyricum (CB), a probiotic, has demonstrated potential in influencing colon cancer cell behavior, particularly through the modulation of long non-coding RNAs (lncRNAs) and mRNAs. This study examines the effects of CB on the expression of lncRNAs and mRNAs in SW480 colon cancer cells and their association with apoptosis.

View Article and Find Full Text PDF

Apical periodontitis microbiome association with salivary and serum inflammatory burden.

Int Endod J

January 2025

Department of Endodontics, Centre of Oral Clinical and Translational Sciences, Faculty of Dentistry, Oral and Craniofacial Sciences, Guy's Dental Hospital, King's College London, London, UK.

Aims: Apical Periodontitis (AP) involves complex interactions between the root canal microbiome and the host immune response, with potential risk of local and systemic inflammatory burden, however there is no evidence available regarding correlation between microbiome and inflammatory marker levels. This study aims to identify the microbiome of saliva, intracanal and blood samples in AP subjects and investigate the correlation between intracanal and blood microbiomes with serum inflammatory biomarker levels, and salivary microbiomes with salivary inflammatory biomarker levels.

Methodology: Saliva, Intracanal and blood samples were collected from AP patients undergoing root canal retreatment.

View Article and Find Full Text PDF

The effects of the gut bacterial product, gassericin A, on obesity in mice.

Lipids Health Dis

January 2025

Department of Basic Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran.

Background: Obesity can arise from various physiological disorders. This research examined the impacts of the bacteriocin, gassericin A, which is generated by certain gut bacteria, using an in vivo model of obesity.

Methods: Fifty Swiss NIH mice were randomly assigned to five different groups.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) is a highly effective therapy for malignant blood illnesses that pose a high risk, as well as diseases that are at risk due to other variables, such as genetics. However, the prevalence of graft-versus-host disease (GVHD) has impeded its widespread use. Ensuring the stability of microbial varieties and associated metabolites is crucial for supporting metabolic processes, preventing pathogen intrusion, and modulating the immune system.

View Article and Find Full Text PDF

Purpose Of Review: The review aims to address the knowledge gap and promote the widespread adoption of quinoa as a functional food for improving metabolic health. By presenting a comprehensive overview of its nutritional profile and bioactive components, the review aims to increase consumers' awareness of the potential therapeutic benefits of incorporating quinoa into diets.

Recent Findings: Recent studies have highlighted the diverse range of bioactive compounds in quinoa, such as phytosterols, saponins, phenolic acids, phytoecdysteroids, and betalains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!