Metabolomics-A Promising Approach to Pituitary Adenomas.

Front Endocrinol (Lausanne)

6th Department of Medical Sciences, Department of Endocrinology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania.

Published: January 2019

Metabolomics-the novel science that evaluates the multitude of low-molecular-weight metabolites in a biological system, provides new data on pathogenic mechanisms of diseases, including endocrine tumors. Although development of metabolomic profiling in pituitary disorders is at an early stage, it seems to be a promising approach in the near future in identifying specific disease biomarkers and understanding cellular signaling networks. To review the metabolomic profile and the contributions of metabolomics in pituitary adenomas (PA). A systematic review was conducted via PubMed, Web of Science Core Collection and Scopus databases, summarizing studies that have described metabolomic aspects of PA. Liquid chromatography tandem mass spectrometry (LC-MS/MS) and nuclear magnetic resonance (NMR) spectrometry, which are traditional techniques employed in metabolomics, suggest amino acids metabolism appears to be primarily altered in PA. N-acetyl aspartate, choline-containing compounds and creatine appear as highly effective in differentiating PA from healthy tissue. Deoxycholic and 4-pyridoxic acids, 3-methyladipate, short chain fatty acids and glucose-6-phosphate unveil metabolite biomarkers in patients with Cushing's disease. Phosphoethanolamine, N-acetyl aspartate and myo-inositol are down regulated in prolactinoma, whereas aspartate, glutamate and glutamine are up regulated. Phosphoethanolamine, taurine, alanine, choline-containing compounds, homocysteine, and methionine were up regulated in unclassified PA across studies. Intraoperative use of ultra high mass resolution matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI), which allows localization and delineation between functional PA and healthy pituitary tissue, may contribute to achievement of complete tumor resection in addition to preservation of pituitary cell lines and vasopressin secretory cells, thus avoiding postoperative diabetes insipidus. Implementation of ultra high performance metabolomics analysis techniques in the study of PA will significantly improve diagnosis and, potentially, the therapeutic approach, by identifying highly specific disease biomarkers in addition to novel molecular pathogenic mechanisms. Ultra high mass resolution MALDI-MSI emerges as a helpful clinical tool in the neurosurgical treatment of pituitary tumors. Therefore, metabolomics appears to be a science with a promising prospect in the sphere of PA, and a starting point in pituitary care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6345099PMC
http://dx.doi.org/10.3389/fendo.2018.00814DOI Listing

Publication Analysis

Top Keywords

ultra high
12
promising approach
8
pituitary adenomas
8
pathogenic mechanisms
8
specific disease
8
disease biomarkers
8
mass spectrometry
8
n-acetyl aspartate
8
choline-containing compounds
8
high mass
8

Similar Publications

The use of cardiac devices, including mechanical circulatory support (MCS), cardiac implantable electronic devices (CIEDs), and pacing wires, has increased and significantly improved survival in patients with severe cardiac failure. However, these devices are frequently associated with acute brain injuries (ABIs) including ischemic strokes, intracranial hemorrhages, seizures, and hypoxic-ischemic brain injury which contribute substantially to morbidity and mortality. Computed tomography (CT) and magnetic resonance imaging (MRI), the standard imaging modalities for ABI diagnosis, can pose significant challenges in this patient population due to the risks associated with patient transportation and the incompatibility of ferromagnetic components of certain cardiac devices with high magnetic field of the MRI.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1) is a class 1 carcinogen and mycotoxin known to contribute to the development of hepatocellular carcinoma (HCC), growth impairment, altered immune system modulation, and malnutrition. AFB1 is synthesized by Aspergillus flavus and is known to widely contaminate foodstuffs, particularly maize, wheat, and groundnuts. The mechanism in which AFB1 causes genetic mutations has been well studied, however its metabolomic effects remained largely unknown.

View Article and Find Full Text PDF

Unique hierarchical NiFe-LDH/Ni/NiCoS heterostructure arrays on nickel foam for the improvement of overall water splitting activity.

Nanoscale

January 2025

Chongqing Key Laboratory of Inorganic Functional Materials, College of Chemistry, Chongqing Normal University, Chongqing, 401331, PR China.

The development of environmentally friendly, high-efficiency, stable, earth-abundant and non-precious metal-based electrocatalysts with fast kinetics and low overpotential for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is of exceeding significance but still challenging. Herein, a bifunctional electrode of unique hierarchical NiFe-LDH/Ni/NiCoS/NF (NiFe-LDH = nickel-iron layered double hydroxide and NF = nickel foam) electrocatalytic architecture, which is built up from NiFe-LDH nanosheets, Ni nanoparticles and NiCoS nanoneedles sequentially arrayed on a porous NF substrate, has been prepared by a facile hydrothermal and electrodeposition method. This electrocatalytic architecture is binder-free and its outer NiFe-LDH nanosheets can effectively prevent the oxidation of inner Ni nanoparticles and corrosion of NiCoS nanoneedles during water electrolysis.

View Article and Find Full Text PDF

Developing highly efficient deep-blue multi-resonance thermal activated delayed fluorescence (MR-TADF) materials for ultra-high-definition organic light-emitting diodes (OLEDs) displays that meet the stringent BT.2020 standard remains a significant challenge. In this study, we present a strategy to achieve high-performance deep-blue MR-TADF emitters by integrating a large π-conjugated double-boron-embedded MR skeleton with strategically positioned peripheral steric hindrance groups.

View Article and Find Full Text PDF

Background: Activated phosphoinositide 3-kinase (PI3K) δ Syndrome (APDS) is an ultra-rare, potentially life-threatening disease that lacks approved treatments in Spain. This study aimed to apply Multi-Criteria Decision Analysis (MCDA) to assess the value of the first pharmacological treatment for APDS in Spain.

Methods: A multidisciplinary group of 8 experts evaluated the selective PI3Kδ inhibitor leniolisib against Standard of Care (SoC).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!