The accuracy of drill hole location is critical for implant placement in orthopaedic surgery. Increasing drill bit size sequentially has been suggested as a method for improving the accuracy of drill hole start location. The aim of this study was to determine whether sequential drilling or drill angulation would alter accuracy of drill hole start location. Three specialist veterinary surgeons drilled holes in synthetic bone models either directly, or with sequentially increasing drill bit sizes. Drilling was performed at 0, 10 and 20 to perpendicular to the bone models. Three synthetic bone models were used to mimic canine cancellous and cortical bones. Sequential drilling resulted in greater inaccuracy in drill hole location when assessing all drilling angles together. There was no influence of surgeon or synthetic bone density on drilling accuracy. The combination of drill angulation and sequential drilling increased inaccuracy in drill hole start location. We conclude that sequential drilling decreased accuracy of drill hole location in the synthetic bone model when drilling was angled. Inaccuracy associated with the drill hole start location should be taken into account when performing surgery, although the magnitude of inaccuracy is low when compared with other sources of error such as angulation.

Download full-text PDF

Source
http://dx.doi.org/10.1136/vr.104897DOI Listing

Publication Analysis

Top Keywords

drill hole
32
sequential drilling
20
accuracy drill
20
hole start
20
start location
20
synthetic bone
20
drill
13
drill angulation
12
hole location
12
bone models
12

Similar Publications

Research and development of new intelligent foaming and discharging agent system.

Sci Rep

December 2024

Hubei Key Laboratory of Oil and Gas Drilling and Production Engineering, Yangtze University, Wuhan, 430100, China.

The application of classic foaming agent faces several issues, including excessive use of defoaming agent, inadequate defoaming, pipeline blockage due to silicone oil precipitation, and high development cost of the foaming agent. To address the aforementioned issues, a novel intelligent foaming agent was created. This resulted in the development of a new intelligent foaming and discharging agent system.

View Article and Find Full Text PDF

Objective: Repositioning and fixation of the posterior septal angle (PSA) relative to the anterior nasal spine (ANS) is a well-known maneuver performed during rhinoplasty. Suture techniques through the periosteum along with transosseous drilling through the spine are the two most common fixation methods. We report on how nasal airway patency varies as a function of technique and patient demographic factors.

View Article and Find Full Text PDF

Impact of Drill Bit Wear on Screw Withdrawal Resistance in Pinewood.

Materials (Basel)

November 2024

Department of Furniture Design, Faculty of Forestry and Wood Technology, Poznań University of Life Sciences, 60-637 Poznań, Poland.

Many factors affect screw withdrawal resistance (SWR), including screw size, embedment depth, the pre-drilled hole's diameter, dimensional accuracy, and the furniture pieces' material properties being joined. While prior research has extensively examined the influence of these factors, this study aimed to explore a neglected factor: how drill bit wear impacts pilot hole quality and subsequent SWR. The experimental setup included pinewood samples with pre-drilled 5 mm diameter blind pilot holes with a depth of 45 mm.

View Article and Find Full Text PDF

Background and aim Synthetic composite bone models (reinforced solid foam) have become the standardised material used in practical orthopaedic education. However, with discussions regarding whether composite foam truly replicates human bone, there has been a drive to explore other available models. Three-dimensional (3D) printing has risen in both popularity and availability, providing a new option in the creation of anatomically accurate bone models.

View Article and Find Full Text PDF

Lost circulation is known as one of the most important challenges during drilling. In addition to high costs due to mud loss and nonproductive time, lost circulation may lead to several consequences, including stuck pipes, wellbore collapse, poor hole cleaning, and well control issues. Different materials and techniques have been tested in the literature and recommended to prevent and control drilling fluid loss.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!