mTORC1 and GSK3 play critical roles in early stages of (macro)autophagy, but how they regulate late steps of autophagy remains poorly understood. Here we show that mTORC1 and GSK3-TIP60 signaling converge to modulate autophagosome maturation through Pacer, an autophagy regulator that was identified in our recent study. Hepatocyte-specific Pacer knockout in mice results in impaired autophagy flux, glycogen and lipid accumulation, and liver fibrosis. Under nutrient-rich conditions, mTORC1 phosphorylates Pacer at serine157 to disrupt the association of Pacer with Stx17 and the HOPS complex and thus abolishes Pacer-mediated autophagosome maturation. Importantly, dephosphorylation of Pacer under nutrient-deprived conditions promotes TIP60-mediated Pacer acetylation, which facilitates HOPS complex recruitment and is required for autophagosome maturation and lipid droplet clearance. This work not only identifies Pacer as a regulator in hepatic autophagy and liver homeostasis in vivo but also reveals a signal integration mechanism involved in late stages of autophagy and lipid metabolism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2018.12.017 | DOI Listing |
Reprod Biomed Online
October 2024
State Key Laboratory of Reproductive Medicine, Clinical Center of Reproductive Medicine, First Affiliated Hospital, Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.. Electronic address:
Research Question: Does putrescine (PUT) improve oocytes from reproductively old mice by promoting mitochondrial autophagy?
Design: Germinal vesicle stage cumulus-oocyte complexes (COCs) were obtained from 9-month old female C57BL/6N mice and divided into control, PUT and difluoromethylornithine, inhibitor (DFMO) groups. These germinal vesicle COCs underwent mouse in-vitro maturation (IVM) culture to observe the extrusion of the first polar body in each group. Using JC-1, dichloro-dihydro-fluorescein diacetate fluorescent probes and a confocal microscope, the mitochondrial membrane potential integrity and reactive oxygen species levels were measured in metaphase II stage oocytes.
Autophagy
March 2025
Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, Freiburg, Baden-Württemberg, Germany.
Selective macroautophagy/autophagy relies on newly formed double-membrane compartments, known as phagophores, to sequester and recycle diverse cellular components, including organelles, biomolecular condensates and protein aggregates, maturing into autophagosomes that fuse with the vacuole/lysosome. Autophagosomes originate at the cargo-vacuole/ER interface, where autophagy factors assemble into the phagophore assembly site (PAS). However, how autophagy proteins organize on the surface of structurally and biophysically different cargoes, and achieve spatial confinement at the PAS to support autophagosome formation remains unclear.
View Article and Find Full Text PDFBiochim Biophys Acta Mol Basis Dis
February 2025
Department of Medical Research, National Taiwan University Hospital, Taipei 100, Taiwan.
Variants in the CRB1 gene cause retinal degeneration and subsequent vision impairment in patients of retinitis pigmentosa (RP). No treatments are currently available to cure or impede the progression of CRB1-associated retinopathy. Previous studies have revealed alterations in the endolysosomal systems and autophagy in the absence of CRB1, but their roles in the pathogenesis of CRB1 retinopathy are unclear.
View Article and Find Full Text PDFCell Signal
February 2025
Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin 300211, China. Electronic address:
Background: WIPI1 is a member of the WD-repeat protein family that interacts with phosphoinositides and plays a crucial role in autophagy. This study investigated how WIPI1-mediated mitophagy dysfunction contributes to ventricular remodeling in rat and mouse models of diabetes mellitus.
Methods: The study utilized a 32-weeks diabetic animal model to simulate long-term diabetic conditions.
Nat Commun
February 2025
Institute of Special Environmental Medicine and Medical School, Nantong University and Guangzhou Women and Children's Medical Center, GMU-GIBH Joint School of Life Science, Guangzhou Medical University, Guangzhou, PR China.
Mammalian epididymal epithelial cells are crucial for sperm maturation. Historically, vacuole-like ultrastructures in epididymal epithelial cells were observed via transmission electron microscopy but were undefined. Here, we utilize volume electron microscopy (vEM) to generate 3D reconstructions of epididymal epithelial cells and identify these vacuoles as intercellular organelle reservoirs (IORs) in the lateral intercellular space (LIS), which contains protein aggregates, autophagosomes, lysosome-related organelles and mitochondrial residues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!