Thermostable proteins are advantageous in industrial applications, as pharmaceuticals or biosensors, and as templates for directed evolution. As protein-design methodologies improve, bioengineers are able to design proteins to perform a desired function. Although many rationally designed proteins end up being thermostable, how to intentionally design de novo, thermostable proteins is less clear. UVF is a de novo-designed protein based on the backbone structure of the Engrailed homeodomain (EnHD) and is highly thermostable (T > 99°C vs. 52°C for EnHD). Although most proteins generally have polar amino acids on their surfaces and hydrophobic amino acids buried in their cores, protein engineers followed this rule exactly when designing UVF. To investigate the contributions of the fully hydrophobic core versus the fully polar surface to UVF's thermostability, we built two hybrid, chimeric proteins combining the sets of buried and surface residues from UVF and EnHD. Here, we determined a structural, dynamic, and thermodynamic explanation for UVF's thermostability by performing 4 μs of all-atom, explicit-solvent molecular dynamics simulations at 25 and 100°C, Tanford-Kirkwood solvent accessibility Monte Carlo electrostatic calculations, and a thermodynamic analysis of 40 temperature runs by the weighted-histogram analysis method of heavy-atom, structure-based models of UVF, EnHD, and both chimeric proteins. Our models showed that UVF was highly dynamic because of its fully hydrophobic core, leading to a smaller loss of entropy upon folding. The charged residues on its surface made favorable electrostatic interactions that contributed enthalpically to its thermostability. In the chimeric proteins, both the hydrophobic core and charged surface independently imparted thermostability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6382955 | PMC |
http://dx.doi.org/10.1016/j.bpj.2019.01.012 | DOI Listing |
Polymers (Basel)
January 2025
State Key Laboratory of Petroleum Resources and Engineering, China University of Petroleum (Beijing), Beijing 102249, China.
The Bohai oilfield is characterized by severe heterogeneity and high average permeability, leading to a low water flooding recovery efficiency. Polymer flooding only works for a certain heterogeneous reservoir. Therefore, supplementary technologies for further enlarging the swept volume are still necessary.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou 256606, China.
Due to the high viscosity and low fluidity of viscous crude oil, how to effectively recover spilled crude oil is still a major global challenge. Although solar thermal absorbers have made significant progress in accelerating oil recovery, its practical application is largely restricted by the variability of solar radiation intensity, which is influenced by external environmental factors. To address this issue, this study created a new composite fiber that not only possesses solar energy conversion and storage capabilities but also facilitates crude oil removal.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, 117997 Moscow, Russia.
Alzheimer's disease (AD) pathogenesis is correlated with the membrane content of various lipid species, including cholesterol, whose interactions with amyloid precursor protein (APP) have been extensively explored. Amyloid-β peptides triggering AD are products of APP cleavage by secretases, which differ depending on the APP and secretase location relative to ordered or disordered membrane microdomains. We used high-resolution NMR to probe the interactions of the cholesterol analog with APP transmembrane domain in two membrane-mimicking systems resembling ordered or perturbed lipid environments (bicelles/micelles).
View Article and Find Full Text PDFFoods
January 2025
Department of Bioactivity and Food Analysis, Institute of Food Science Research (CIAL, CSIC-UAM, CEI UAM+CSIC), Nicolás Cabrera 9, 28049 Madrid, Spain.
The impact of the world's growing population on food systems and the role of dietary patterns in the management of non-communicable diseases underscore the need to explore sustainable and dietary protein sources. Although microalgae have stood out as alternative sources of proteins and bioactive peptides, some species such as remain unexplored. This study aimed to characterize 's proteome and evaluate its potential as a source of bioactive peptides by using an in silico approach.
View Article and Find Full Text PDFHeliyon
January 2025
Jiangxi Guangyuan Chemical Co. Ltd., Ji'an, Jiangxi, 331500, China.
A Silicon-containing Oligomeric Charring Agent (CNCSi-DA) containing triazine rings and silicon was designed, synthesized and characterized. CNCSi-DA was chosen as macromolecular coating agent to modify Ammonium Polyphosphate (APP) to be core-shell coating-mixture (APP@CNCSi-DA). The synergistic effects of APP@CNCSi-DA on hydrophobicity, mechanical and flame retardant properties, and mechanism of flame-retardant polypropylene (PP) were studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!