Neonicotinoid insecticides interact with the orthosteric sites of nicotinic acetylcholine receptors (nAChRs) formed at the interfaces of (a) two adjacent α subunits and (b) α and non-α subunits. However, little is known of the detailed contributions of these two orthosteric sites to neonicotinoid actions. We therefore applied voltage-clamp electrophysiology to the Dα1/chicken β2 hybrid nAChR expressed in Xenopus laevis oocytes to explore the agonist actions of imidacloprid and thiacloprid on wild type receptors and following binding site mutations. First, we studied the S221E mutation in loop C of the ACh binding site of the Dα1 subunit. Secondly, we explored the impact of combining this mutation in loop C with others in the loop D-E-G triangle (R57S; E78K; K140T; S221E). The S221E loop C mutation alone reduced the affinity of the neonicotinoids tested, while hardly affecting the concentration-response curve for acetylcholine. Addition of the three R57S; E78K; K140T mutations in the loop D-E-G triangle led to a further reduction in neonicotinoid sensitivity, suggesting that all four binding site loops (C, D, E, G) in the Dα1 subunit, which are located upstream of loop B in the N-terminal, extracellular domain, contribute to the selective actions of neonicotinoid insecticides.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pestbp.2018.03.008 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!