Drought risk refers to the potential losses from hazard imposed by a drought event, and it is generally characterized as a function of vulnerability, hazard, and exposure. In this study, drought risk is assessed at a national level across Africa, and the impacts of climate change, population growth, and socioeconomic vulnerabilities on drought risk are investigated. A rigorous framework is implemented to quantify drought vulnerability considering various sectors including economy, energy and infrastructure, health, land use, society, and water resources. Multi-model and multi-scenario analyses are employed to quantify drought hazard using an ensemble of 10 regional climate models and a multi-scalar drought index. Drought risk is then assessed in each country for 2 climate emission pathways (RCP4.5 and RCP8.5), 3 population scenarios, and 3 vulnerability scenarios during three future periods between 2010 and 2100. Drought risk ratio is quantified, and the role of each component (i.e. hazard, vulnerability, and exposure) is identified, and the associated uncertainties are also characterized. Results show that drought risk is expected to increase in future across Africa with varied rates for different models and scenarios. Although northern African countries indicate aggravating drought hazard, drought risk ratio is found to be highest in central African countries as a consequent of vulnerability and population rise in that region. Results indicate that if no climate change adaptation is implemented, unprecedented drought hazard and risk will occur decades earlier. In addition, controlling population growth is found to be imperative for mitigating drought risk in Africa (even more effective than climate change mitigation), as it improves socioeconomic vulnerability and reduces potential exposure to drought.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2019.01.278 | DOI Listing |
Front Plant Sci
December 2024
Council for Agricultural Research and Economics (CREA), Research Centre for Animal Production and Aquaculture, Lodi, Italy.
The changing climate could expand northwards in Europe the autumn sowing of cool-season grain legumes to take advantage of milder winters and to escape the increasing risk of terminal drought. Greater frost tolerance is a key breeding target because sudden frosts following mild-temperature periods may produce high winter mortality of insufficiently acclimated plants. The increasing year-to-year climate variation hinders the field-based selection for frost tolerance.
View Article and Find Full Text PDFSoybean ( [L.] Merr.) production is susceptible to biotic and abiotic stresses, exacerbated by extreme weather events.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Socioeconomics section, CSIR-Savanna Agricultural Research Institute, Tamale, Northern Region, Ghana; Dept. of Agricultural Economics and Agribusiness, University of Ghana, Legon, Accra, Ghana. Electronic address:
Agricultural water is indispensable for fostering resilient and sustainable agricultural practices. However, empirical evidence regarding the relationship between community water resources (CWR) and risk mitigation behaviours among farm households remains scant. Utilising nationally-representative household survey data and geospatial information on household locations, we investigate how access to CWR influences crop diversification and sharecropping.
View Article and Find Full Text PDFSci Total Environ
December 2024
College of Environmental Science and Engineering, China West Normal University, Nanchong 637002, China. Electronic address:
With the impact of global climate change, drought events are becoming more frequent, making it critically important to quantitatively evaluate the effects of these events on air pollution. This study uses the augmented synthetic control method and the mediation effect model to quantitatively evaluate the impact effect of the winter-spring drought of 2023 on PM-O compound pollution and its driving factors with Chinese prefecture-level city data. This study indicates that: firstly, compared to non-drought periods, both the monthly averaged and diurnal variations pattern of PM and O significantly increased during drought periods.
View Article and Find Full Text PDFPlant Biol (Stuttg)
December 2024
Department of Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany.
Temperate mixed forests are currently experiencing severe drought conditions and face increased risk of degradation. However, it remains unclear how critical tree physiological functions such as sap flow density (SFD) and tree water deficit (TWD, defined as reversible stem shrinkage when water is depleted), respond to extreme environmental conditions and how they interact under dry conditions. We monitored SFD and TWD of three co-occurring European tree species (Fagus sylvatica, Fraxinus excelsior and Acer pseudoplatanus) in dry conditions, using high temporal resolution sap flow, dendrometer, and environmental measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!