A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactions of graphene derivatives with glutamate-neurotransmitter: A parallel first principles - Docking investigation. | LitMetric

Interactions of graphene derivatives with glutamate-neurotransmitter: A parallel first principles - Docking investigation.

J Mol Graph Model

Programa de Pós-graduação em Nanociências, Universidade Franciscana, Santa Maria, RS, Brazil. Electronic address:

Published: May 2019

Glutamate plays an important role in excitatory neurotransmission, learning, and memory processes, and under pathological conditions it is directly associated with several chronic neurological disorders, such as depression, epilepsy, schizophrenia, and Parkinson's. Therefore, the detection and quantification of Glutamate is important for the rapid diagnosis of these diseases. Using first principles and molecular docking simulations we have evaluated the energetic, structural, and binding properties of graphene derivatives, such as pristine graphene (pristine-Gr) and oxidized graphene with carboxylic (Gr-COOH), carbonyl (Gr-COH), hydroxyl (Gr-OH), and epoxy (-O-) groups interacting with the glutamate neurotransmitter. The calculated binding affinity free energies from the docking complexes (glutamate-graphene family) suggest higher oxidized graphene-based glutamate molecular recognition than the pristine-Gr, with the following order of oxidized graphene derivatives according to ab initio results: (Gr-O∼Gr-COOH ∼ Gr-COH > Gr-OH)>pristine-Gr. Herein, the ab initio binding energies found for the glutamate-graphene family complexes are in the range of 0.24-0.80 eV. The configurations studied showed a biophysical adsorption regime without significant changes in the physico-chemical properties of the adsorbed glutamate neurotransmitter, in accordance with the general acceptance criteria of the detection systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jmgm.2019.01.007DOI Listing

Publication Analysis

Top Keywords

graphene derivatives
12
oxidized graphene
8
glutamate neurotransmitter
8
glutamate-graphene family
8
glutamate
5
interactions graphene
4
derivatives glutamate-neurotransmitter
4
glutamate-neurotransmitter parallel
4
parallel principles
4
principles docking
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!