Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dynamic changes in alternative splicing during the life cycle of neurons support development and plasticity, and are implicated in disease pathology. Cell-specific alternative splicing programs coordinate exon selection across networks of functionally connected genes. In this opinion piece, we highlight recent publications that identify some of the molecular mechanisms-RNA and DNA binding proteins and epigenetic modifications-which direct cell-specific exon selection during pre-mRNA splicing. Aberrant splicing patterns are signature features of a growing number of diseases of the nervous system. Recent publications demonstrate the value of delineating basic mechanisms that dictate exon choice to inform the development of new therapeutic strategies that correct or compensate for damaging deficits in alternative splicing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6629480 | PMC |
http://dx.doi.org/10.1016/j.conb.2018.12.013 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!