Cardioprotection by spermidine does not depend on structural characteristics of the myocardial microcirculation in aged mice.

Exp Gerontol

Institute of Functional and Applied Anatomy, Hannover Medical School, 30625 Hannover, Germany; Cluster of Excellence REBIRTH (From Regenerative Biology to Reconstructive Therapy), Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany. Electronic address:

Published: May 2019

AI Article Synopsis

Article Abstract

Aims: Ageing is associated with cardiovascular disease and reduced cardiac function. This cardiac functional decline is accompanied by cardiac remodeling and alterations in cardiomyocyte composition. Recently, it was shown that the natural polyamine spermidine preserves cardiac function and cardiomyocyte composition in old mice. As cardiac function critically relies on blood supply, we tested whether spermidine has also beneficial effects on ageing-associated changes of the myocardial microcirculation.

Methods: Using transmission electron microscopy, the left ventricular capillaries of young (4-months old) and aged (24-months old) C57BL/6J male mice were investigated by stereology. Aged mice were subdivided into an untreated group and a group that was fed spermidine late in life for 6 months. Specifically, total volume, surface area and length of capillaries as well as endothelial thickness were estimated. Additionally, the total length of precapillary arterioles was assessed. The protein level of VEGF-A was measured using Western blot.

Results: Ageing was associated with whole heart and left ventricular hypertrophy. All total capillary-related values (including volume, surface area and length) were significantly higher in 24-month-old mice compared with 4-month-old mice. Moreover, VEGF-A expression was significantly enhanced in aged mice. The mean thickness of the endothelium was not different, but the mean area of myocardium supplied by capillaries was smaller in old mice. Spermidine treatment had no significant effect on the ageing-associated structural changes or VEGF-A expression.

Conclusions: In conclusion, in the left ventricles of aged mice the growth of capillaries and arterioles supplying cardiomyocytes were in proportion to whole organ hypertrophy. Spermidine had no effect on quantitative characteristics of capillaries or arterioles, suggesting that the beneficial effects of spermidine on the ageing heart do not depend on the quantitative structural characteristics of the microcirculation which does not exclude potential functional differences between the groups.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.exger.2019.01.026DOI Listing

Publication Analysis

Top Keywords

aged mice
16
cardiac function
12
mice
9
structural characteristics
8
ageing associated
8
cardiomyocyte composition
8
beneficial effects
8
left ventricular
8
volume surface
8
surface area
8

Similar Publications

Cancer-associated fibroblasts (CAFs) are a crucial component in the tumor microenvironment (TME) of peritoneal metastasis (PM), where they contribute to tumor progression and metastasis via secretion of interleukin-6 (IL-6). Here, we investigated the role of IL-6 in PM of gastric cancer (GC) and assessed whether anti-IL-6 receptor antibody (anti-IL-6R Ab) could inhibit PM of GC. We conducted immunohistochemical analysis of IL-6 and α-smooth muscle (α-SMA) expressions in clinical samples of GC and PM, and investigated the interactions between CAFs and GC cells in vitro.

View Article and Find Full Text PDF

Atherosclerosis and aortic aneurysms are prevalent cardiovascular diseases in the elderly, characterized by chronic inflammation and oxidative stress. This study explores the role of CircXYLT1 in regulating oxidative stress and vascular remodeling in age-related vascular diseases. RNA sequencing revealed a significant upregulation of CircXYLT1 in the vascular tissues of aged mice, highlighting its potential role in age-related vascular diseases.

View Article and Find Full Text PDF

Background: Methylglyoxal (MGO), a highly reactive precursor of advanced glycation end products (AGEs), is endogenously produced and prevalent in various ultra-processed foods. MGO has emerged as a significant precursor implicated in the pathogenesis of type 2 diabetes and neurodegenerative diseases. To date, the effects of dietary MGO on the intestine have been limited explored.

View Article and Find Full Text PDF

PIK3R3 regulates differentiation and senescence of periodontal ligament stem cells and mitigates age-related alveolar bone loss by modulating FOXO1 expression.

J Adv Res

January 2025

Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, National Clinical Research Center for Oral Diseases, 22 Zhongguancun South Avenue, Beijing 100081, China. Electronic address:

Introduction: Periodontal diseases are prevalent among middle-aged and elderly individuals. There's still no satisfactory solution for tooth loss caused by periodontal diseases. Human periodontal ligament stem cells (hPDLSCs) is a distinctive subgroup of mesenchymal stem cells, which play a crucial role in periodontal supportive tissues, but their application value hasn't been fully explored yet.

View Article and Find Full Text PDF

Melatonin protects aged oocytes from depalmitoylation-mediated quality reduction by promoting PPT1 degradation and antioxidation.

Redox Biol

January 2025

Department of Reproductive Medicine, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Nanjing Medical University, Nanjing, Jiangsu, 211166, China; Department of Reproductive Medicine, Affiliated Jinling Hospital, The First School of Clinical Medicine, Southern Medical University, Nanjing, 210002, China. Electronic address:

Oocyte aging is closely related to a decline in female fertility, accompanied by increased reactive oxygen species levels and changes in protein posttranslational modifications. However, the role of protein palmitoylation in oocyte aging has not been investigated. In the present study, a new association between redox and palmitoylation in aging oocytes was found.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!