In this study, we use ultrafast time-resolved absorption and fluorescence spectroscopies to examine A. marina phycobilisomes isolated from cells grown under light of different intensities and spectral regimes. Investigations were performed at room temperature and at 77 K. The study demonstrates that if complexes are stabilized by high phosphate (900 mM) buffer, there are no differences between them in temporal and spectral properties of fluorescence. However, when the complexes are allowed to disassemble into trimers in low phosphate (50 mM) buffer, differences are clearly observed. The fluorescence properties of intact or disassembled phycobilisomes from cells grown in low intensity white light are unresponsive to variation in phosphate concentration. This antenna complex was further studied in detail with application of femtosecond time-resolved absorption at room temperature. Combined spectroscopic and kinetic analysis of time-resolved fluorescence and absorption data of this antenna allowed us to identify spectrally different forms of phycocyanobilins and to propose a simplified model of how they could be distributed within the phycobilisome structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbabio.2019.01.002 | DOI Listing |
J Phys Chem B
January 2025
UM-DAE Centre for Excellence in Basic Sciences, Kalina Campus of Mumbai University, Santacruz (E), Mumbai 400098, India.
Excited-state proton transfer (ESPT) in organic photoacids is a widely studied phenomenon in which D-luciferin is of special mention, considering the fact that apart from its phenolic OH group, the nitrogen atoms at either of the two thiazole moieties could also participate in hydrogen bonding interactions with a proton-donating solvent during ESPT. As a result, several transient species could appear during the ESPT process. We hereby deploy subpicosecond time-resolved fluorescence upconversion (FLUP) and transient absorption (TA) spectroscopic techniques to understand the detailed photophysics of D-luciferin in water as well as in dimethyl sulfoxide (DMSO) and ethanol.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Oxford University: University of Oxford, Department of Chemistry, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Organic semiconducting polymers play a pivotal role in the development of field-effect transistors (OFETs) and organic light-emitting diodes (OLEDs), owing to their cost-effectiveness, structural versatility, and solution processability. However, achieving polymers with both high charge carrier mobility (μ) and photoluminescence (PL) quantum yield (Φ) remains a challenge. In this work, we present the design and synthesis of a novel donor-acceptor π-conjugated polymer, TTIF-BT, featuring a di-Thioeno[3,2-b] ThioenoIndeno[1,2-b] Fluorene (TTIF) backbone as the donor component.
View Article and Find Full Text PDFChemistry
January 2025
Northeastern University, Department of Materials Physics and Chemistry, No.11, Wenhua Road, Lane 3,Heping District, 110819, Shenyang, CHINA.
Pyrene aggregates, as classic luminescent materials, are of great interest from a scientific viewpoint owing to the development of optoelectronic materials. In this study, we designed a compound 1,4,5-triphenyl-2-(pyren-1-yl)-4,5-dihydro-1H-imidazole (IM-PY) which was achieved with two crystalline polymorphs (IMPY-G and IMPY-B). They exhibit the green emission and the blue emission, respectively, both with pyrene serving as the luminescent core.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Key Laboratory of Materials Physics, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China.
Unveiling the nonlinear interactions between terahertz (THz) electromagnetic waves and free carriers in two-dimensional materials is crucial for the development of high-field and high-frequency electronic devices. Herein, we investigate THz nonlinear transport dynamics in a monolayer graphene/MoS heterostructure using time-resolved THz spectroscopy with intense THz pulses as the probe. Following ultrafast photoexcitation, the interfacial charge transfer establishes a nonequilibrium carrier redistribution, leaving free holes in the graphene and trapping electrons in the MoS.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Chemistry and the Manitoba Institute for Materials, University of Manitoba, 144 Dysart Road, Winnipeg, Manitoba R3T 2N2, Canada.
The ability to manipulate excited-state decay cascades using molecular structure is essential to the application of abundant-metal photosensitizers and chromophores. Ligand design has yielded some spectacular results elongating charge-transfer excited state lifetimes of Fe(II) coordination complexes, but triplet metal-centered (MC) excited states─recently demonstrated to be critical to the photoactivity of isoelectronic Co(III) polypyridyls─have to date remained elusive, with temporally isolable examples limited to the picosecond regime. With this report, we show how strong-field donors and intramolecular π-stacking can conspire to stabilize a long-lived MC excited state for a remarkable 4.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!