Mechanism-Dependent Modulation of Ultrafast Interfacial Water Dynamics in Intrinsically Disordered Protein Complexes.

Angew Chem Int Ed Engl

Structural and Computational Biology Unit, Cell Biology and Biophysics Unit, EMBL, Meyerhofstrasse 1, 69117, Heidelberg, Germany.

Published: March 2019

AI Article Synopsis

  • The study focuses on intrinsically disordered proteins (IDPs) and how their lack of fixed structure affects their interaction with other molecules, specifically regarding dynamics during binding.
  • Researchers examined two IDPs, IBB and Nup153FG, which interact with the same nuclear transport receptor (Importinβ) but use different mechanisms for binding.
  • The findings reveal that the behavior of water at the interface of these protein complexes changes with binding: Nup153FG maintains water dynamics, while IBB shows a slowdown, highlighting the importance of these dynamics in biological functions like nuclear transport.

Article Abstract

The recognition of intrinsically disordered proteins (IDPs) is highly dependent on dynamics owing to the lack of structure. Here we studied the interplay between dynamics and molecular recognition in IDPs with a combination of time-resolving tools on timescales ranging from femtoseconds to nanoseconds. We interrogated conformational dynamics and surface water dynamics and its attenuation upon partner binding using two IDPs, IBB and Nup153FG, both of central relevance to the nucleocytoplasmic transport machinery. These proteins bind the same nuclear transport receptor (Importinβ) with drastically different binding mechanisms, coupled folding-binding and fuzzy complex formation, respectively. Solvent fluctuations in the dynamic interface of the Nup153FG-Importinβ fuzzy complex were largely unperturbed and slightly accelerated relative to the unbound state. In the IBB-Importinβ complex, on the other hand, substantial relative slowdown of water dynamics was seen in a more rigid interface. These results show a correlation between interfacial water dynamics and the plasticity of IDP complexes, implicating functional relevance for such differential modulation in cellular processes, including nuclear transport.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6563697PMC
http://dx.doi.org/10.1002/anie.201813354DOI Listing

Publication Analysis

Top Keywords

water dynamics
16
interfacial water
8
intrinsically disordered
8
nuclear transport
8
fuzzy complex
8
dynamics
7
mechanism-dependent modulation
4
modulation ultrafast
4
ultrafast interfacial
4
water
4

Similar Publications

Cezanne-2 (Cez2) is a deubiquitinylating (DUB) enzyme involved in the regulation of ubiquitin-driven cellular signaling and selectively targets Lys11-linked polyubiquitin chains. As a representative member of the ovarian tumor (OTU) subfamily DUBs, it performs cysteine proteolytic isopeptide bond cleavage; however, its exact catalytic mechanism is not yet resolved. In this work, we used different computational approaches to get molecular insights into the Cezanne-2 catalytic mechanism.

View Article and Find Full Text PDF

Background: When designing cutting-edge technology, particularly humanoid social robots, an essential consideration is understanding how individuals naturally engage in social interactions, shaping their relationships with technology and media.

Method: In pursuit of insights into the application of natural human behavior, specifically reciprocation, in human-robot interaction, an experiment involving 72 participants, involving facial electromyography, focusing on zygomatic and corrugator muscles, served as a tool to gauge users' emotional valence during interactions. The study assessed users' willingness to reciprocate a favor and measured compliance by tracking the number of raffle tickets purchased by users at the robot's request.

View Article and Find Full Text PDF

vClean: assessing virus sequence contamination in viral genomes.

NAR Genom Bioinform

March 2025

Department of Life Science and Medical Bioscience, Graduate School of Advanced Science and Engineering, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, Tokyo 162-8480, Japan.

Recent advancements in viral metagenomics and single-virus genomics have improved our ability to obtain the draft genomes of environmental viruses. However, these methods can introduce virus sequence contaminations into viral genomes when short, fragmented partial sequences are present in the assembled contigs. These contaminations can lead to incorrect analyses; however, practical detection tools are lacking.

View Article and Find Full Text PDF

Controls of the Nucleation Rate and Advection Rate on Barite Precipitation in Fractured Porous Media.

Langmuir

January 2025

State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China.

Mineral precipitation is ubiquitous in natural and engineered environments, such as carbon mineralization, contaminant remediation, and oil recovery in unconventional reservoirs. The precipitation process continuously alters the medium permeability, thereby influencing fluid transport and subsequent reaction kinetics. The diversity of preferential precipitation zones controls flow and transport efficiency as well as the capacity of mineral sequestration and immobilization.

View Article and Find Full Text PDF

Characteristics of gut microbiota profiles in Asian elephants (Elephas maximus) with gastrointestinal disorders.

Sci Rep

January 2025

Center of Elephant and Wildlife Health, Animal Hospital, Faculty of Veterinary Medicine, Chiang Mai University, Chiang Mai, 50100, Thailand.

Colic and diarrhea are common gastrointestinal (GI) disorders in captive Asian elephants, which can severely impact health and lead to mortality. Gut dysbiosis, indicated by alterations in gut microbiome composition, can be observed in individuals with GI disorders. However, changes in gut microbial profiles of elephants with GI disorders have never been investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!