The presence of stem cells within the dental-pulp tissue as well as their differentiation into a new generation of functional odontoblast-like cells constitutes an important step of the dentin-pulp regeneration. Recent investigations demonstrated that the complement system activation participates in 2 critical steps of dentin-pulp regeneration: pulp progenitor's recruitment and pulp nerve sprouting. Surprisingly, its implication in odontoblastic differentiation has not been addressed yet. Since the complement receptor C5a receptor-like 2 (C5L2) is expressed by different stem cells, the aim of this study is to investigate if the dental pulp stem cells express C5L2 and if this receptor participates in odontoblastic differentiation. Immunohistochemistry performed on human third molar pulp sections showed a perivascular co-localization of the mesenchymal stem cell markers STRO1 and C5L2. In vitro immunofluorescent staining confirmed that hDPSCs express C5L2. Furthermore, we determined by real-time polymerase chain reaction that the expression of C5L2 is highly modulated in human dental pulp stem cells (hDPSCs) undergoing odontoblastic differentiation. Moreover, we showed that this odontogenesis-regulated expression of C5L2 is specifically potentiated by the proinflammatory cytokine TNFα. Using a C5L2-siRNA silencing strategy, we provide direct evidence that C5L2 constitutes a negative regulator of the dentinogenic marker DMP1 (dentin matrix protein 1) expression by hDPSCs. Our findings suggest a direct correlation between the odontoblastic differentiation and the level of C5L2 expression in hDPSCs and identify C5L2 as a negative regulator of DMP1 expression by hDPSCs during the odontoblastic differentiation and inflammation processes. This work is the first to demonstrate the involvement of C5L2 in the biological function of stem cells, provides an important knowledge in understanding odontoblastic differentiation of dental pulp stem cells, and may be useful in future dentin-pulp engineering strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481006 | PMC |
http://dx.doi.org/10.1177/0022034518820461 | DOI Listing |
Int J Mol Sci
December 2024
Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation.
View Article and Find Full Text PDFJ Adv Res
January 2025
Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:
Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.
Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.
Cell Prolif
January 2025
Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China.
Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.
View Article and Find Full Text PDFFront Biosci (Elite Ed)
October 2024
Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 1983969411 Tehran, Iran.
Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.
Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.
J Oral Biosci
December 2024
Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan. Electronic address:
Objectives: This study aimed to elucidate the roles of Prrx1 and Prrx2, homeobox transcription factors, in tooth development and determine whether Prrx2 regulates pannexin 3 (Panx3) expression, which is important in preodontoblasts.
Methods: Tooth sections were prepared from 13.5-, 15.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!