The presence of stem cells within the dental-pulp tissue as well as their differentiation into a new generation of functional odontoblast-like cells constitutes an important step of the dentin-pulp regeneration. Recent investigations demonstrated that the complement system activation participates in 2 critical steps of dentin-pulp regeneration: pulp progenitor's recruitment and pulp nerve sprouting. Surprisingly, its implication in odontoblastic differentiation has not been addressed yet. Since the complement receptor C5a receptor-like 2 (C5L2) is expressed by different stem cells, the aim of this study is to investigate if the dental pulp stem cells express C5L2 and if this receptor participates in odontoblastic differentiation. Immunohistochemistry performed on human third molar pulp sections showed a perivascular co-localization of the mesenchymal stem cell markers STRO1 and C5L2. In vitro immunofluorescent staining confirmed that hDPSCs express C5L2. Furthermore, we determined by real-time polymerase chain reaction that the expression of C5L2 is highly modulated in human dental pulp stem cells (hDPSCs) undergoing odontoblastic differentiation. Moreover, we showed that this odontogenesis-regulated expression of C5L2 is specifically potentiated by the proinflammatory cytokine TNFα. Using a C5L2-siRNA silencing strategy, we provide direct evidence that C5L2 constitutes a negative regulator of the dentinogenic marker DMP1 (dentin matrix protein 1) expression by hDPSCs. Our findings suggest a direct correlation between the odontoblastic differentiation and the level of C5L2 expression in hDPSCs and identify C5L2 as a negative regulator of DMP1 expression by hDPSCs during the odontoblastic differentiation and inflammation processes. This work is the first to demonstrate the involvement of C5L2 in the biological function of stem cells, provides an important knowledge in understanding odontoblastic differentiation of dental pulp stem cells, and may be useful in future dentin-pulp engineering strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6481006PMC
http://dx.doi.org/10.1177/0022034518820461DOI Listing

Publication Analysis

Top Keywords

odontoblastic differentiation
28
stem cells
24
dental pulp
12
pulp stem
12
expression hdpscs
12
c5l2
11
dmp1 expression
8
differentiation
8
dentin-pulp regeneration
8
express c5l2
8

Similar Publications

Patients with diabetes mellitus (DM) have an increased risk of tooth decay caused by alterations in their tooth development and their oral environment, as well as a tendency to present with pulp infection due to compromised immune response. The present study analyzed the characteristic alterations in tooth development under DM conditions using incisors from type 2 diabetic mouse model (T2DM mice). In micro-CT analyses, T2DM mice showed delayed dentin and enamel formation.

View Article and Find Full Text PDF

Odontogenic exosomes simulating the developmental microenvironment promote complete regeneration of pulp-dentin complex in vivo.

J Adv Res

January 2025

Center of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030 People's Republic of China; Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022 People's Republic of China. Electronic address:

Introduction: Establishing an optimized regenerative microenvironment for pulp-dentin complex engineering has become increasingly critical. Recently, exosomes have emerged as favorable biomimetic nanotherapeutic tools to simulate the developmental microenvironment and facilitate tissue regeneration.

Objectives: This study aimed to elucidate the multifaceted roles of exosomes from human dental pulp stem cells (DPSCs) that initiated odontogenic differentiation while sustaining mesenchymal stem cell (MSC) characteristics in odontogenesis, angiogenesis, and neurogenesis during pulp-dentin complex regeneration.

View Article and Find Full Text PDF

Tooth root development is a complex process essential for tooth function, yet the role of root dentin development in tooth morphogenesis is not fully understood. Optineurin (OPTN), linked to bone disorders like Paget's disease of bone (PDB), may affect tooth root development. In this study, we used single-cell sequencing of embryonic day 16.

View Article and Find Full Text PDF

Background: Regenerative endodontics requires an innovative delivery system to release antibiotics/growth factors in a sequential trend. This study focuses on developing/characterizing a thermoresponsive core-shell hydrogel designed for targeted drug delivery in endodontics.

Methods: The core-shell chitosan-alginate microparticles were prepared by electrospraying to deliver bone morphogenic protein-2 for 14 days and transforming growth factor-beta 1 (TGF-β1) for 7-14 days.

View Article and Find Full Text PDF

Prrx2, the paired-related homeobox transcription factor, functions as a potential regulator of pannexin 3 expression in odontoblast differentiation.

J Oral Biosci

December 2024

Department of Pediatric Dentistry / Special Needs Dentistry, Division of Oral Health Sciences, Graduate School of Medical and Dental Sciences, Institute of Science Tokyo, Tokyo 113-8549, Japan. Electronic address:

Objectives: This study aimed to elucidate the roles of Prrx1 and Prrx2, homeobox transcription factors, in tooth development and determine whether Prrx2 regulates pannexin 3 (Panx3) expression, which is important in preodontoblasts.

Methods: Tooth sections were prepared from 13.5-, 15.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!