Foldable lithium-sulfur (Li-S) batteries have captured considerable interest in advanced flexible energy storage systems. However, sulfur utilization, cycling stability, and mechanical durability are still not satisfactory for flexible batteries with high sulfur loadings. Herein, we present one type of new freestanding electrode material derived from a thiourea-based covalent organic gel (COG). COG can accommodate high loading of carbon nanotubes (CNTs) and sulfur with the concomitant formation of an embedded conductive CNT network. The unique performance of the COG not only facilitates ion transfer and electrolyte infiltration but also effectively confines polysulfides in the internal cavities. These advantages endow the freestanding CNT/S/COG electrodes with high reversible capacity, good rate performance, excellent cycling stability, and superior structural integrity. CNT/S/COG with an ultrahigh sulfur loading of 12.6 mg cm delivers a high discharging capacity of 13.7 mA h cm (1097 mA h g) at 0.1 C; the capacity retention is as high as 83.9% after 100 cycles. Moreover, CNT/S/COG could be processed into foldable pouch cells. This study has demonstrated great potential of COGs for the fabrication of advanced flexible energy storage devices with high energy density and long cycling life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.8b21639 | DOI Listing |
Int J Biol Macromol
January 2025
College of Materials Science and Engineering, Nanjing Tech University, Nanjing 211816, PR China. Electronic address:
The carboxymethyl chitosan (CMCS)-based porous beads are still criticized for their limited number of binding sites, which impairs their efficacy in removing aqueous pollutants. To overcome this challenge, this work introduces the production of covalently crosslinked CMCS-based beads containing SiO and poly(2-acrylamido-2-methylpropanesulfonic acid) (PAMPS). The porous composite beads not only possess remarkable stability under acidic conditions, but also have abundant active binding sites for adsorption.
View Article and Find Full Text PDFTalanta
December 2024
Department of Food Science and Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China; Shenzhen Key Laboratory of Food Macromolecules Science and Processing, Shenzhen University, Shenzhen 518060, China. Electronic address:
The simultaneous detection and removal of Ag from drinking water was crucial for preventing human health, while it was also extremely challenging due to bifunctional materials that combine both Ag adsorption and detection functions rarely being explored. In this study, a benzotrithiophene-based covalent organic framework (TAPA-BTT) was synthesized and applied to detect and remove Ag. TAPA-BTT exhibited high crystallinity, a large specific surface area, and good thermal stability.
View Article and Find Full Text PDFWater Res
December 2024
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, PR China. Electronic address:
Membrane technology is an important component of resource recovery. Covalent organic frameworks (COFs) with inherent long-range ordered structure and permanent porosity are ideal materials for fabricating advanced membrane. Zwitterionic COFs have unique features beyond single ionic COFs containing anions or cations.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Savannah River National Laboratory, Aiken, SC, USA.
Liquid low-level radioactive waste at the Savannah River Site contains several species of mercury, including inorganic, elemental, and methylmercury. This waste is solidified and stabilized in a cementitious waste form referred to as saltstone. Soluble mercury is stabilized as β-cinnabar, HgS as the result of reaction between the mercury and sulfur present in blast furnace slag, one of the cementitious reagents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!