The photonic nanojet is a highly concentrated beam with low divergence on the shadow side of dielectric microparticles. In this Letter, we first theoretically and experimentally investigate the formation of high-quality photonic nanojets by decorating spider silk. The dragline silks are directly extracted from cellar spiders and capable of efficiently collecting ultraviolet cure adhesive. The liquid-collecting capacity of the captured silk is the result of a singular fiber structure with periodic spindle knots. Using a scanning-optical-microscope system, we show that high-quality photonic nanojets are generated by silk fiber with spindle knots. With the variation in spindle-knot dimensions, the properties of photonic nanojets, such as intensity distribution, focal length, and full width at half-maximum, are able to tune flexibly. By combining the unique biocompatibility, flexibility, and tensile strength, the silk filaments with spindle knots pave a potential way for original bio-photonic applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.44.000667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!