AI Article Synopsis

  • A fast method for detecting glyphosate in maize and rice was created using liquid chromatography and mass spectrometry.
  • Samples were prepped with acidified methanol and an internal standard for accuracy.
  • The method showed high accuracy and precision, with good linearity and low detection limits for glyphosate, making it suitable for routine cereal analysis.

Article Abstract

A fast and easy method was developed for the determination of glyphosate in maize and rice by using liquid chromatography triple quadrupole mass spectrometry with a Dionex Ion Pack column and phosphate buffer mobile phase. Samples were extracted with an acidified methanol solution. An isotope-labeled internal standard was added to the sample before extraction to ensure accurate tracking and quantification. The method's performance was evaluated through a series of assessments to determine the accuracy, precision, linearity, matrix effect, limit of detection (LOD), and limit of quantification (LOQ). The mean recoveries for both matrices were within 70-105% at three fortification levels, including the LOQ. The precision for replicates was <20% (RSD%) for both matrices. Good linearity (R=0.9982) was obtained over the concentration range of 0.01-1.5 mg kg. The LOD was determined to be 0.002 mg kg for rice and 0.004 mg kg for maize. The LOQ was 0.01 mg kg for both maize and rice. Due to its versatility, the proposed method could be considered useful for the determination of glyphosate in cereals in routine analysis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/03601234.2018.1550306DOI Listing

Publication Analysis

Top Keywords

determination glyphosate
8
maize rice
8
fast easy
8
easy method
8
glyphosate residue
4
residue maize
4
rice fast
4
method involving
4
involving liquid
4
liquid chromatography-mass
4

Similar Publications

Background: The decline in wheat output in Ethiopia is widely attributed to pests, which has led to a rise in the usage of pesticides to boost productivity. The degree of pesticides sorption and degradation which influence the likelihood of environmental contamination from pesticides seeping into water bodies from soil has not yet been published for Ethiopian soils. The study aimed at to quantify the levels of pesticide residues, assess glyphosate's adsorption capabilities and degradation rate in the soils.

View Article and Find Full Text PDF

A near-infrared multifunctional fluorescent bio-probe with large stokes shift and high quantum yield for effective determination of heavy metal lead and pesticide glyphosate in vitro and vivo.

J Hazard Mater

December 2024

Department of Chemistry, College of Arts and Sciences, Northeast Agricultural University, Harbin 150030, PR China; Key Laboratory of Agricultural Functional Molecule Design and Utilization of Heilongjiang Province, Northeast Agricultural University, Harbin 150030, China. Electronic address:

Heavy metal contamination and pesticide residues pose significant threats to human health and ecosystems. Despite its broad applications, fluorescence imaging technology often struggles in complex ecological and biological environments due to disadvantages of background autofluorescence and low quantum yield. This study introduced a near-infrared (NIR) multifunctional "off-on-off" isophorone-based fluorescent bio-probe, DHB, characterized by a high fluorescence quantum yield (10.

View Article and Find Full Text PDF

Introduction: Extensive agricultural activity results in significant exposure to pesticides, particularly glyphosate, which has been linked to immunological disorders, including apoptosis and inflammation. , a species from the Bromeliaceaefamily native to Mexico, is traditionally used in folk medicine for its medicinal properties, including anti-inflammatory effects. This research aimed to evaluate the protective effects of extract on human peripheral blood mononuclear cells (PBMCs) exposed to Faena®, a commercially available glyphosate-based herbicide.

View Article and Find Full Text PDF

Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances.

Environ Sci Pollut Res Int

December 2024

Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.

This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.

View Article and Find Full Text PDF

Background And Purpose: Glyphosate-based herbicides, extensively utilized worldwide, raise concerns regarding potential human risks due to the detection of glyphosate (GLY) in human body fluids. This study aims to address critical knowledge gaps regarding whether GLY undergoes metabolism in humans, particularly considering the limited information available on human metabolism.

Experimental Approach: The study investigated GLY and its metabolites in eight amenity horticultural workers using proton nuclear magnetic resonance (H-NMR) data analysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!