The optimal duration of treatment with nucleos(t)ide analogues (NAs) for patients with HBeAg-negative chronic hepatitis B (CHB) is unknown. The aim of this study was to identify an immune signature associated with off-treatment remission to NA therapy. We performed microarray analysis of peripheral blood mononuclear cell (PBMCs) from six patients with chronic hepatitis B who stopped NA therapy (three with off-treatment remission, three with relapse) and five patients with chronic HBV infection (previously termed 'inactive carriers') served as controls. Results were validated using qRT-PCR on a second group of 21 individuals (17 patients who stopped treatment and four controls). PBMCs from 38 patients on long-term NA treatment were analysed for potential to stop treatment. Microarray analysis indicated that patients with off-treatment remission segregated as a distinct out-group. Twenty-one genes were selected for subsequent validation. Ten of these were expressed at significantly lower levels in the patients with off-treatment remission compared to the patients with relapse and predicted remission with AUC of 0.78-0.92. IFNγ, IL-8, FASLG and CCL4 were the most significant by logistic regression. Twelve (31.6%) of 38 patients on long-term NA therapy had expression levels of all these four genes below cut-off values and hence were candidates for stopping treatment. Our data suggest that patients with HBeAg-negative CHB who remain in off-treatment remission 3 years after NA cessation have a distinct immune signature and that PBMC RNA levels of IFNγ, IL-8, FASLG and CCL4 may serve as potential biomarkers for stopping NA therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jvh.13068DOI Listing

Publication Analysis

Top Keywords

off-treatment remission
20
patients hbeag-negative
12
chronic hepatitis
12
patients
11
hbeag-negative chronic
8
immune signature
8
microarray analysis
8
pbmcs patients
8
patients chronic
8
patients long-term
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!