DNA hydrogels are biocompatible and are suitable for many biomedical applications. However, to be useful imaging probes or drug carriers, the ordinary bulk size of DNA hydrogels must be overcome. Here we put forward a new strategy for fabricating a novel and simple protein-scaffolded DNA nanohydrogel, constructed through a direct DNA self-assembly using three types of streptavidin (SA)-based DNA tetrad for the activation of imaging and targeting therapy of cancer cells. The DNA nanohydrogels are easily prepared, and we show that by varying the initial concentration of DNA tetrad, it is possible to finely control their size within nanoscale range, which are favorable as carriers for intracellular imaging and transport. By further incorporating therapeutic agents and tumor-targeting MUC1 aptamer, these multifunctionalized SA-scaffolded DNA nanohydrogels (SDH) can specifically target cancer cells and selectively release the preloaded therapeutic agents via a structure switching when in an ATP-rich intracellular environment, leading to the activation of the fluorescence and efficient treatment of cancer cells. With the advantages of facile modular design and assembly, effective cellular uptake, and excellent biocompatibility, the method reported here has the potential for the development of new tunable DNA nanohydrogels with multiple synergistic functionalities for biological and biomedical applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.analchem.8b05706 | DOI Listing |
Biomater Adv
December 2024
Department of Chemistry and the Natural Science Research Institute, Myongji University, 116 Myongji-ro, Yongin-si 17058, Republic of Korea. Electronic address:
MicroRNAs (miRNAs) are non-coding, endogenous small single-stranded RNA molecules involved in post-transcriptional regulation of gene expression. It has been demonstrated that dysregulation of miRNA plays a major role in tumor formation, proliferation, and metastasis. Therefore, the delivery of anti-miRNA oligonucleotides to block the activity of these oncogenic miRNAs is a high-potential anti-cancer therapy approach.
View Article and Find Full Text PDFAdv Sci (Weinh)
May 2024
Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China.
Peripheral nerve deficits give rise to motor and sensory impairments within the limb. The clinical restoration of extensive segmental nerve defects through autologous nerve transplantation often encounters challenges such as axonal mismatch and suboptimal functional recovery. These issues may stem from the limited regenerative capacity of proximal axons and the subsequent Wallerian degeneration of distal axons.
View Article and Find Full Text PDFLangmuir
June 2023
Institute of Organic Chemistry III-Macromolecular Chemistry and Organic Materials, University of Ulm, Albert-Einstein-Allee 11, Ulm 89081, Germany.
In a highly efficient and reproducible process, bovine serum albumin (BSA) nanogels are prepared from inverse nanoemulsions. The concept of independent nanoreactors of the individual droplets in the nanoemulsions allows high protein concentrations of up to 0.6% in the inverse total system.
View Article and Find Full Text PDFEur J Med Chem
August 2023
Collaborative Innovation Center of Tumor Marker Detection Technology, Equipment and Diagnosis-Therapy Integration in Universities of Shandong, Shandong Province Key Laboratory of Detection Technology for Tumor Makers, School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, China. Electronic address:
The action pathways of starvation therapy and photodynamic therapy (PDT) do not exist in isolation and are usually related to tumor cell metabolism and immune regulation, which are of great significance in the treatment of malignant tumors. Here, a cancer-targeted "domino" cascade reactor is constructed for synergistic starvation therapy and amplifies photodynamic therapy by assembling hemin and glucose oxidase (GOx) into DNA hydrogel load with hypoxia-inducible factor 1α (HIF-1α) and photosensitizer chlorin e6 (Ce6). The cascade reactor has excellent biocompatibility and tumor targeting, which promotes PDT by reducing HIF-1α.
View Article and Find Full Text PDFPharmaceutics
March 2023
Laboratory of Nanobiotechnology, Department of Chemistry, Bar-Ilan University, Ramat Gan 52900, Israel.
We have developed new formulations of nanohydrogels (NHGs) complexed with DNA devoid of cell toxicity, which, together with their tuned sizes, makes them of great interest for delivering DNA/RNA for foreign protein expression. Transfection results demonstrate that, unlike classical lipo/polyplexes, the new NHGs can be incubated indefinitely with cells without apparent cellular toxicity, resulting in the high expression of foreign proteins for long periods of time. Although protein expression starts with a delay as compared to classical systems, it is sustained for a long period of time, even after passing cells without observation of toxicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!