LncIRS1 controls muscle atrophy via sponging miR-15 family to activate IGF1-PI3K/AKT pathway.

J Cachexia Sarcopenia Muscle

Department of Animal Genetics, Breeding and Reproduction, College of Animal Science, South China Agricultural University, Guangzhou, 510642, Guangdong, China.

Published: April 2019

Background: Recent studies indicate important roles for long noncoding RNAs (lncRNAs) in the regulation of gene expression by acting as competing endogenous RNAs (ceRNAs). However, the specific role of lncRNAs in skeletal muscle atrophy is still unclear. Our study aimed to identify the function of lncRNAs that control skeletal muscle myogenesis and atrophy.

Methods: RNA sequencing was performed to identify the skeletal muscle transcriptome (lncRNA and messenger RNA) between hypertrophic broilers and leaner broilers. To study the 'sponge' function of lncRNA, we constructed a lncRNA-microRNA (miRNA)-gene interaction network by integrated our previous submitted skeletal muscle miRNA sequencing data. The primary myoblast cells and animal model were used to assess the biological function of the lncIRS1 in vitro or in vivo.

Results: We constructed a myogenesis-associated lncRNA-miRNA-gene network and identified a novel ceRNA lncRNA named lncIRS1 that is specifically enriched in skeletal muscle. LncIRS1 could regulate myoblast proliferation and differentiation in vitro, and muscle mass and mean muscle fibre in vivo. LncIRS1 increases gradually during myogenic differentiation. Mechanistically, lncIRS1 acts as a ceRNA for miR-15a, miR-15b-5p, and miR-15c-5p to regulate IRS1 expression, which is the downstream of the IGF1 receptor. Overexpression of lncIRS1 not only increased the protein abundance of IRS1 but also promoted phosphorylation level of AKT (p-AKT) a central component of insulin-like growth factor-1 pathway. Furthermore, lncIRS1 regulates the expression of atrophy-related genes and can rescue muscle atrophy.

Conclusions: The newly identified lncIRS1 acts as a sponge for miR-15 family to regulate IRS1 expression, resulting in promoting skeletal muscle myogenesis and controlling atrophy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463472PMC
http://dx.doi.org/10.1002/jcsm.12374DOI Listing

Publication Analysis

Top Keywords

skeletal muscle
24
muscle
10
lncirs1
9
muscle atrophy
8
mir-15 family
8
muscle myogenesis
8
lncirs1 acts
8
regulate irs1
8
irs1 expression
8
skeletal
6

Similar Publications

Introduction And Importance: Neglected posterior hip dislocations in adults are rare, particularly when untreated for years. In developing nations, patients often rely on traditional bone setters, leading to delayed diagnosis and increased complications. Adult hip dislocations carry a higher risk of avascular necrosis and require complex treatments.

View Article and Find Full Text PDF

Agreement analysis and associated factors of SARC-F and SARC-CALF in screening of risk sarcopenia in people living with human immunodeficiency virus.

Clinics (Sao Paulo)

January 2025

Posgraduate Program in Food, Nutrition and Health, Faculty of Health Sciences, Federal University of Grande Dourados (UFGD), Dourados, Mato Grosso do Sul, Brazil. Electronic address:

Introduction: People Living with Human Immunodeficiency Virus (PLHIV) appear to be at a higher risk of developing sarcopenia. Various factors seem to influence the risk of sarcopenia, and its prevalence may differ depending on the screening tool used. This study aimed to (i) Screen the risk of sarcopenia in PLHIV using the SARC-F and SARCCalf and identify associated factors; (ii) Analyze the agreement between the instruments in PLHIV.

View Article and Find Full Text PDF

Spatially ordered recruitment of fast muscles in accordance with movement strengths in larval zebrafish.

Zoological Lett

January 2025

National Institutes of Natural Sciences, Exploratory Research Center On Life and Living Systems (ExCELLS), National Institute for Basic Biology, Okazaki, Aichi, 444-8787, Japan.

In vertebrates, skeletal muscle comprises fast and slow fibers. Slow and fast muscle cells in fish are spatially segregated; slow muscle cells are located only in a superficial region, and comprise a small fraction of the total muscle cell mass. Slow muscles support low-speed, low-force movements, while fast muscles are responsible for high-speed, high-force movements.

View Article and Find Full Text PDF

Objective: The objective of this study was to analyse the association between body composition and changes in health-related quality of life (HRQoL) of patients followed for hip and knee osteoarthritis (OA).

Methods: Longitudinal data from the Knee and Hip OsteoArthritis Long-term Assessments (KHOALA) cohort, a multicentre cohort of 878 patients with symptomatic knee and/or hip OA, were used. The main outcome criteria were changes in patient-reported outcomes measures, the Study Short Form-36 (physical functioning, pain, mental health and vitality) and the OsteoArthritis Knee and Hip Quality Of Life (OAKHQOL)(physical activity, pain and mental health).

View Article and Find Full Text PDF

The Utility of Preoperative Phenylephrine Testing in Müller Muscle Conjunctival Resection Surgery for Involutional Ptosis.

Ophthalmic Plast Reconstr Surg

January 2025

Division of Orbital and Ophthalmic Plastic Surgery, Jules Stein Eye Institute, University of California, Los Angeles, California, U.S.A.

Purpose: Phenylephrine testing prior to Müller muscle conjunctival resection has traditionally been used to predict postoperative outcomes. The purpose of this study is to determine if preoperative phenylephrine testing impacts postoperative changes in eyelid position.

Methods: In this multicenter cross-sectional cohort study, 270 eyelids of participants with involutional ptosis and levator function >12 mm who underwent Müller muscle conjunctival resection were divided into 2 comparison groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!