Background: Waltheria indica exhibited strong nematocidal activity against Meloidogyne incognita, a causal agent of root-knot nematode disease. This study aimed to characterize the nematocidal metabolites and to evaluate the efficacy of the formulated extract of W. indica in the biological control of M. incognita under both pot and field conditions.
Results: Three 4-quinolone alkaloids, 5'-methoxywaltherione A, waltherione A and waltherione C, were isolated and characterized as nematocidal metabolites. 5'-Methoxywaltherione A and waltherione A caused high mortality in juveniles of Meloidogyne arenaria, Meloidogyne hapla, M. incognita and Bursaphelenchus xylophilus, whereas waltherione C exhibited significant nematocidal activity against only root-knot nematodes. In pot experiments, application of a wettable powder-type formulation of the ethyl acetate extract of W. indica (W. indica WP20) at 26.7, 53.4 and 106.8 mg a.i. kg soil significantly reduced the formation of galls and egg masses on the roots of tomato plants in a dose-dependent manner. In addition, application of 20 mg a.i. per plant W. indica WP20 effectively reduced gall formation on the roots of melon plants and population density of nematode in soil compared with untreated control under field conditions.
Conclusion: W. indica can be used as an effective botanical nematicide in the eco-friendly control of root-knot nematode disease. © 2019 Society of Chemical Industry.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ps.5363 | DOI Listing |
J Appl Microbiol
January 2025
ICAR-Indian Institute of Horticultural Research, Hessaraghatta Lake Post, Bengaluru 560089, India.
Aim: Bacillus subtilis is usually found in soil, and their biocontrol and plant growth promoting capabilities are being explored more recently than ever. However, knowledge about metabolite production and genome composition of endophytic Bacillus subtilis from seeds is limited. In the present study, Bacillus subtilis EVCu15 strain isolated from the seeds of Vasconcellea cundinamarcensis (mountain papaya) was subjected to whole genome sequencing, and detailed molecular and functional characterization.
View Article and Find Full Text PDFMicroorganisms
December 2024
Federal Research Center of Biological Plant Protection, p/o 39, 350039 Krasnodar, Russia.
The primary aim of this research was to study the effectiveness of various strains of antagonist microorganisms and biological preparations against , in addition to their impact on the quality of tomato fruits and crop structure. Four microorganism strains and three registered environmentally safe nematicides were used in the experiment presented herein. The results showed that the strains F-22BK/6 and F-22BK/4 had the greatest biological efficacy, reducing the number of galls on tomato plants by 91.
View Article and Find Full Text PDFSci Rep
January 2025
Division of Microbiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
Root-knot nematodes (Meloidogyne spp.) are significant pests that cause considerable damage to crops, prompting a need for sustainable control methods. This study evaluated the nematicidal potential of fungal culture filtrates and botanicals as eco-friendly alternatives.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, 10400, Thailand.
Meloidogyne enterolobii, a guava root-knot nematode, is a highly virulent pest in tropical and subtropical regions causing galls or knots in roots of diverse plant species posing a serious threat to agriculture. Managing this nematode is challenging due to limitations in conventional identification based on isolation and microscopic classification requiring expertise and time. A colorimetric and fluorescent LAMP assay using simplified extraction method targeting rDNA-ITS region was developed to detect M.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
Bari Unit, Institute for Sustainable Plant Protection, Department of Biology, Agricultural and Food Sciences, National Research Council of Italy, 70126 Bari, Italy.
The immune response in plants is regulated by several phytohormones and involves the overexpression of defense genes, including the pathogenesis-related () genes. The data reported in this paper indicate that nematodes can suppress the immune response by inhibiting the expression of defense genes. Transcripts from nine defense genes were detected by qRT-PCR in the roots of tomato plants at three and seven days post-inoculation (dpi) with living juveniles (J2s) of (root-knot nematodes, RKNs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!