Although radiography continues to play a critical role in osseous tumor assessment, there have been remarkable advances in cross-sectional imaging. MRI has taken a lead in this assessment due to high tissue contrast and spatial resolution, which are well suited for bone lesion assessment. More recently, although somewhat lagging other organ systems, quantitative parameters have shown promising potential as biomarkers for osseous tumors. Among these sequences are chemical shift imaging (CSI), apparent diffusion coefficient (ADC), and intravoxel incoherent motion (IVIM) from diffusion-weighted imaging (DWI), quantitative dynamic contrast enhanced (DCE)-MRI, and magnetic resonance spectroscopy (MRS). In this article, we review the background and recent roles of these quantitative MRI biomarkers for osseous tumors. Level of Evidence: 3 Technical Efficacy Stage: 3 J. MAGN. RESON. IMAGING 2019. J. Magn. Reson. Imaging 2019;50:702-718.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.26672 | DOI Listing |
Orthop Rev (Pavia)
January 2025
Osteoporosis is a degenerative bone disease that causes the weakening of bone structure. Since bone structure is dynamic throughout a person's lifespan, bones are under constant growth and destruction in a process known as bone turnover or bone remodeling. Osteoporosis involves the disruption of this growth/destruction equilibrium towards the destructive side.
View Article and Find Full Text PDFCalcif Tissue Int
January 2025
Neuromuscular Research Laboratory/Warrior Human Performance Research Center, Department of Sports Medicine and Nutrition, University of Pittsburgh, 3860 S. Water St, Pittsburgh, PA, 15203, USA.
Military training improves tibial density, structure, and estimated strength; however, men and women may adapt differently. Most work performed in military populations has assessed changes in bone health during initial entry programs, a timeframe at the beginning of a service member's career when bones may be more adaptable to a novel mechanical stimulus. The purpose of this investigation was to examine changes in tibial volumetric bone mineral density (vBMD), structure, and estimated strength, and biomarkers of bone metabolism (P1NP, osteocalcin, TRAP5b, sclerostin) between male and female candidates measured at the start and end of United States Marine Corps Officer Candidates School (OCS), a 10-week military training program attended by older service members (~ 25 y/o) who may have previous military experience.
View Article and Find Full Text PDFAnal Chim Acta
January 2025
Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan; Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, Taiwan. Electronic address:
Background: Rheumatoid arthritis (RA) is a chronic autoimmune disease that causes joint damage and progressive destruction of adjacent cartilage and bones. Quick and accurate detection of rheumatoid factors (RF) and anti-cyclic citrullinated peptide antibodies (anti-CCP) in serum is effective in diagnosing RA and preventing its progression. However, current methods for detecting these two biomarkers are costly, time-consuming, labor-intensive, and require specialized equipment.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
January 2025
Department of Medicine III and Center for Healthy Aging, Technische Universität Dresden, Dresden, Germany.
Type 1 diabetes (T1D) represents a significant health burden worldwide, with associated complications including bone fragility. Current clinical methods and biomarkers for assessing bone health and predicting fracture risk in T1D are limited and lack accuracy. MicroRNAs (miRNAs) have emerged as potential biomarkers for predicting T1D-induced bone loss, although comprehensive profiling studies are lacking.
View Article and Find Full Text PDFMedicina (Kaunas)
December 2024
División de Medicina Molecular, Centro de Investigación Biomédica de Occidente (CIBO), Instituto Mexicano del Seguro Social (IMSS), Guadalajara 44340, Jalisco, Mexico.
: Uric acid (UA) and the markers of mineral bone metabolism and inflammation are commonly altered in patients with chronic kidney disease (CKD) and are associated with the risk of cardiovascular complications and death. Studies point to a link between high serum UA and mineral bone homeostasis and inflammation, but controversy remains. The aim of this study was to evaluate the relationship between UA levels and mineral bone metabolism and inflammation biomarkers in a sample of Mexican patients with CKD 3a-5.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!