The circadian time structure (CTS) has long been the subject of research in occupational medicine, but not to industrial toxicology, including methods of setting threshold limit values (TLVs) and employee biological monitoring. Numerous animal and human investigations document vulnerability to chemical, contagion, and other xenobiotics varies according to the circadian time of encounter. Permanent and rotating nightshift personnel are exposed to industrial contaminants in the same or higher concentration as dayshift personnel, and because of incomplete CTS adjustment to night work, contact with contaminants occurs during a different biological time than day workers. Thus, the amount of protection afforded by certain TLVs, especially for employees of high-risk settings who work night and other nonstandard shift schedules, might be inadequate. The CTS seems additionally germane to procedures of employee biological monitoring in that high-amplitude 24 h rhythms in biomarkers indicative of xenobiotic exposure may result in misjudgment of health risks when data are not gathered in sufficient frequency over time and properly interpreted. Biological reference values time-qualified for their rhythmic variation, currently of interest to laboratory medicine practice, are seemingly important to industrial medicine as circadian time and work-shift specific biological exposure indices to improve surveillance of personnel, particularly those working nonstandard shift schedules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6449632 | PMC |
http://dx.doi.org/10.2486/indhealth.SW-2 | DOI Listing |
Microorganisms
December 2024
Department of Biochemistry & Microbiology, Rutgers University, New Brunswick, NJ 08901, USA.
Breastfeeding supplies nutrition, immunity, and hormonal cues to infants. Feeding expressed breast milk may result in de-phased milk production and feeding times, which distort the real-time circadian cues carried by breast milk. We hypothesized that providing expressed breast milk alters the microbiotas of both breast milk and the infant's gut.
View Article and Find Full Text PDFAlcohol
January 2025
Department of Veterinary Physiology & Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA, 77843. Electronic address:
Emerging research reveals that alcohol use by fathers before conception can affect the growth and development of their offspring. Here, we used a C57BL/6J mouse model to study the effects of alcohol exposure on the behavior of the first-generation (F1) offspring, comparing the impacts of alcohol exposure by mothers, fathers, and both parents. Our goal was to determine how alcohol exposure by each parent or both parents influences the behavior of the offspring.
View Article and Find Full Text PDFJ Anim Ecol
January 2025
Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum Koenig, Centre for Biodiversity Monitoring and Conservation Science, Bonn, Germany.
Understanding insect behaviour and its underlying drivers is vital for interpreting changes in local biodiversity and predicting future trends. Conventional insect traps are typically limited to assess the composition of local insect communities over longer time periods and provide only limited insights into the effects of abiotic factors, such as light on species activity. Achieving finer temporal resolution is labour-intensive or only possible under laboratory conditions.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, São Paulo 05508-000, SP, Brazil.
All known bioluminescent fungi are basidiomycetes belonging to the Agaricales. They emit 520-530 nm wavelength light 24 h per day in a circadian rhythm. The number of known bioluminescent fungi has more than doubled in the past 15 years from 64 to 132 species.
View Article and Find Full Text PDFJ Biol Rhythms
January 2025
Department of Physics and i3n, University of Aveiro, Aveiro, Portugal.
The role of the hierarchical organization of the suprachiasmatic nucleus (SCN) in its functioning, jet lag, and the light treatment of jet lag remains poorly understood. Using the core-shell model, we mimic collective behavior of the core and shell populations of the SCN oscillators in transient states after rapid traveling east and west. The existence of a special region of slow dynamical states of the SCN oscillators can explain phenomena such as the east-west asymmetry of jet lag, instances when entrainment to an advance is via delay shifts, and the dynamics of jet lag recovery time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!