Although autophagy and phagocytosis are involved in the regulation of host inflammatory response to bacterial infection in macrophages, the underlying mechanisms have not been completely elucidated. In the present study, we found that infecting RAW264.7 macrophages with Staphylococcus aureus (S. aureus) activated multiple signaling pathways including phosphatidylinositide 3-kinase (PI3K)/protein kinase B (Akt), nuclear factor-κB (NF-κB), and Rac1, as well as triggered autophagy. LY294002, a specific PI3K activity inhibitor, significantly decreased autophagy and phagocytosis of macrophages upon S. aureus infection. Similarly, knockdown of Beclin1 by specific siRNA significantly inhibited autophagy and phagocytosis of S. aureus-infected macrophages. Additionally, we showed that although administration of Beclin1 siRNA had no effects on phosphorylation of Akt (p-Akt), inhibition of PI3K activity by LY294002 significantly decreased the expression of Beclin1, suggesting that Beclin1 is a downstream molecular of PI3K. Furthermore, inhibition of autophagy significantly increased the production of NF-κB-dependent TNFα/IL-1β in S. aureus-infected macrophages. Collectively, these findings demonstrated, for the first time, that the PI3K/Akt-Beclin1 signaling pathway positively regulates phagocytosis and negatively mediates NF-κB-dependent inflammation in S. aureus-infected macrophages.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2019.01.091 | DOI Listing |
Aging Dis
January 2025
Geriatrics department, Renmin hospital of Wuhan University, Wuhan 430060, China.
Autophagy in microglia is essential for the clearance of amyloid-beta (Aβ) and amyloid plaques in Alzheimer's disease. However, reports regarding the levels of autophagy in microglia have been inconsistent; some studies indicate an early enhancement followed by a subsequent reduction, while others describe a persistently weakened state. Notably, there is a lack of systematic studies documenting the temporal changes in microglial autophagy.
View Article and Find Full Text PDFXi Bao Yu Fen Zi Mian Yi Xue Za Zhi
January 2025
Central Laboratory, Chengdu University of TCM, School of Clinical Medicine, Chengdu University of TCM, Chengdu 610072, China.
Efferocytosis refers to the process of phagocytes engulfing and clearing the cells after programmed cell death. In recent years, an increasing number of studies have shown that the mechanisms of efferocytosis are closely related to drug-induced liver injury, hepatic ischemia-reperfusion injury, viral hepatitis, cholestatic liver diseases, metabolic-associated fatty liver disease, alcoholic liver disease, and other liver disorders. This review summarized the research progress on the role of efferocytosis in liver diseases, with the hope of providing new targets for the prevention and treatment of liver diseases.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Evergreen World ADHC, Westminster, CA 92844, USA.
As the organism ages, there is a decline in effective energy supply, and this retards the ability to elaborate new proteins. The consequences of this are especially marked in the gradual decline in brain function. The senescence of cells and their constituent organelles is ultimately the cause of aging of the entire nervous system.
View Article and Find Full Text PDFInt J Biol Sci
January 2025
Research Center of Integrated Traditional Chinese and Western Medicine, the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, 646000 Luzhou, China.
Aging is a complex biological process that involves the gradual decline of cellular, tissue, and organ functions. In kidney, aging manifests as tubular atrophy, glomerulosclerosis, and progressive renal function decline. The critical role of senescence-associated macrophage in diseases, particularly kidney diseases, is increasingly recognized.
View Article and Find Full Text PDFCell Commun Signal
January 2025
School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
Background: Staphylococcus aureus, a known contributor to non-healing wounds, releases vesicles (SAVs) that influence the delicate balance of host-pathogen interactions. Efferocytosis, a process by which macrophages clear apoptotic cells, plays a key role in successful wound healing. However, the precise impact of SAVs on wound repair and efferocytosis remains unknown.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!