PolyJet three-dimensional (3D) printing allows for the rapid manufacturing of 3D moulds for the fabrication of cross-linked poly(dimethylsiloxane) microwell arrays (PMAs). As this 3D printing technique has a resolution on the micrometer scale, the moulds exhibit a distinct surface roughness. In this study, the authors demonstrate by optical profilometry that the topography of the 3D printed moulds can be transferred to the PMAs and that this roughness induced cell adhesive properties to the material. In particular, the topography facilitated immobilization of endothelial cells on the internal walls of the microwells. The authors also demonstrate that upon immobilization of endothelial cells to the microwells, a second population of cells, namely, pancreatic islets could be introduced, thus producing a 3D coculture platform.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1116/1.5087737 | DOI Listing |
Micromachines (Basel)
December 2024
Institute of Life Science and Resources & Department of Food Science and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin 17104, Republic of Korea.
This study introduces a novel method for the fabrication of concave microwells involving water vapor permeation through polydimethylsiloxane (PDMS). This method leverages the exceptional water vapor permeability of PDMS to enable a scalable and cost-effective fabrication process, addressing the limitations of existing techniques such as photolithography that are resource-intensive and complex. PDMS is more permeable to water vapor than to other gas molecules, resulting in the formation of microwells.
View Article and Find Full Text PDFLab Chip
December 2024
Department of Nano-Bio Mechanical System Engineering, Jeonbuk National University, Jeonju-si 54896, Jeollabuk-do, Republic of Korea.
Microwell technology is crucial in biological applications due to its ability to handle small sample sizes and perform numerous assays efficiently. This study aimed to develop a novel technique for microwell fabrication using pressure-assisted steam technology, offering lower cost, simplicity, and high reproducibility. Mechanical properties of microwell surfaces were successfully controlled and characterized, making them suitable for DNA capture.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2024
Materials Fabrication Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan.
Digital PCR (dPCR) enables absolute quantitation of nucleic acid without calibration using a standard curve, and is promising for quantitation of SARS-CoV-2 viral load. However, dPCR suffers from the need for complicated and expensive instruments. We previously reported a dPCR system using a poly(dimethylsiloxane) (PDMS) microwell array (MWA) chip and common laboratory tools.
View Article and Find Full Text PDFAnal Chem
October 2024
Department of Neurobiology, School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing 100069, China.
The fabrication of microarray chips and the precise dispensing of nanoliter to microliter liquids are fundamental for high-throughput parallel biochemical testing. Conventional microwells, typically featuring a uniform cross section, fill completely in a single operation, complicating the introduction of multiple reagents for stepwise and combinatorial analyses. To overcome this limitation, we developed an innovative valved microwell array.
View Article and Find Full Text PDFBiosensors (Basel)
August 2024
Key Laboratory of Biorheological Science and Technology, Ministry of Education and Bioengineering College, Chongqing University, Chongqing 400044, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!