Influenza viruses are a threat to global public health resulting in ~500,000 deaths each year. Despite an intensive vaccination program, influenza infections remain a recurrent, yet unsolved public health problem. Secondary bacterial infections frequently complicate influenza infections during seasonal outbreaks and pandemics, resulting in increased morbidity and mortality. , including methicillin-resistant (MRSA), is frequently associated with these co-infections, including the 2009 influenza pandemic. Damage to alveolar epithelium is a major contributor to severe influenza-bacterial co-infections and can result in gas exchange abnormalities, fluid leakage, and respiratory insufficiency. These deleterious manifestations likely involve both pathogen- and host-mediated mechanisms. However, there is a paucity of information regarding the mechanisms (pathogen- and/or host-mediated) underlying influenza-bacterial co-infection pathogenesis. To address this, we characterized the contributions of viral-, bacterial-, and host-mediated factors to the altered structure and function of alveolar epithelial cells during co-infection with a focus on the 2009 pandemic influenza (pdm2009) and MRSA. Here, we characterized pdm2009 and MRSA replication kinetics, temporal host kinome responses, modulation of MRSA virulence factors, and disruption of alveolar barrier integrity in response to pdm2009-MRSA co-infection. Our results suggest that alveolar barrier disruption during co-infection is mediated primarily through host response dysregulation, resulting in loss of alveolar barrier integrity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409999 | PMC |
http://dx.doi.org/10.3390/v11020116 | DOI Listing |
J Vis Exp
December 2024
Sanford Consortium for Regenerative Medicine; Sanford Burnham Prebys Medical Discovery Institute; Department of Pediatrics, University of California, San Diego School of Medicine;
Human lung tissue is composed of an interconnected network of epithelium, mesenchyme, endothelium, and immune cells from the upper airway of the nasopharynx to the smallest alveolar sac. Interactions between these cells are crucial in lung development and disease, acting as a barrier against harmful chemicals and pathogens. Current in vitro co-culture models utilize immortalized cell lines with different biological backgrounds, which may not accurately represent the cellular milieu or interactions of the lung.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2025
Immunology Department of Hebei Medical University, Shijiazhuang, PR China. Electronic address:
Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), result from pulmonary edema and alveolar-capillary barrier disruption due to inflammation, often triggered by conditions like sepsis. Sepsis-induced ALI (SALI) involves extensive damage to vascular endothelium and alveolar epithelium, leading to respiratory failure. Our study explores ferroptosis, an iron-dependent cell death pathway, and calcium dysregulation in SALI.
View Article and Find Full Text PDFJ Mater Chem B
December 2024
Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, China.
Acute lung injury (ALI) is a critical clinical disease caused by direct factors (inhalation injury, gastroesophageal reflux, ) or indirect factors (including infection, sepsis, burn, shock, trauma, acute pancreatitis, fat embolism, drug overdose, ). ALI is characterized mainly by diffuse interstitial and alveolar edema caused by an uncontrolled inflammatory response and damage to the alveoli-capillary barrier and has very high morbidity and mortality rates. Currently, there is no effective treatment strategy other than mechanical ventilation, fluid management or other supportive treatments.
View Article and Find Full Text PDFJ Anim Sci
January 2023
Department of Animal Science, University of California, Davis, CA 95616, USA.
The objectives of this study were to investigate the in vitro immune-modulatory effects of monoglycerides and zinc glycinate with porcine alveolar macrophages (PAM) and their impact on epithelial barrier integrity using the intestinal porcine enterocyte cell line (IPEC-J2). Cell viability was assessed using a Vybrant MTT assay to determine the appropriate dose range of monoglyceride blend (C4, C8, and C10) and zinc glycinate. In experiment 1, IPEC-J2 cells (5 × 105 cells/mL) were seeded and treated with each compound (monoglycerides: 0, 25, 100, 250, 500, and 1,000 µg/mL; zinc glycinate: 0, 2, 5, 12.
View Article and Find Full Text PDFClin Implant Dent Relat Res
December 2024
Department of Periodontology, University of Bern, Bern, Switzerland.
Introduction: Platelet-rich fibrin (PRF) is being increasingly utilized in surgical procedures due to various improvements in clinical outcomes. More recently, a heating process to denature albumin in the platelet poor plasma (PPP) layer has been shown to extend the resorption time of PRF from a typical 2-week period to 4-6 months. Because of its > 4 month resorption properties, extended PRF (e-PRF) membranes have been used in dentistry as an alternative to collagen membranes in alveolar ridge preservations, ridge augmentations, soft tissue grafting, and as a barrier membrane in lateral sinus grafting procedures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!