Optogenetic manipulation is uniquely useful in unraveling the functional organization of neuronal circuits in the central nervous system by enabling reversible gain- or loss-of-function of discrete populations of neurons within restricted brain regions. This state-of-the-art technology can produce circuit-specific neuromodulation by overexpressing light-sensitive proteins (opsins) in particular cell types of interest. Here, we discuss the principle of optogenetic manipulation and its application in pain research using animal models, and we also discuss how to potentially use optogenetic stimulation in the treatment of migraine headache in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6406977 | PMC |
http://dx.doi.org/10.3390/brainsci9020026 | DOI Listing |
J Neurosci
January 2025
Michigan Neuroscience Institute, University of Michigan, Ann Arbor, MI USA
Regulation of food intake and energy balance is critical to survival. Hunger develops as a response to energy deficit and drives food-seeking and consumption. However, motivations to eat are varied in nature, and promoted by factors other than energy deficit.
View Article and Find Full Text PDFBrain
January 2025
Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA.
Brain stimulation has, for many decades, been considered as a potential solution for the unmet needs of the many people living with drug-resistant epilepsy. Clinically, there are several different approaches in use, including vagus nerve stimulation (VNS), deep brain stimulation of the thalamus, and responsive neurostimulation (RNS). Across populations of patients, all deliver reductions in seizure load and SUDEP risk, yet do so variably, and the improvements seem incremental rather than transformative.
View Article and Find Full Text PDFCerebellum
January 2025
Department of Neuroscience, University of Mons, Mons, Belgium.
As brain-machine interfaces (BMI) are growingly used in clinical settings, understanding how to apply brain stimulation is increasingly important. Despite the emergence of optogenetic techniques, ethical and medical concerns suggest that interventions that are safe and non-invasive, such as Transcranial Alternating Current Stimulation (tACS), are more likely to be employed in human in the near future. Consequently, the question of how and where to apply current stimulation is becoming increasingly important for the efficient neuromodulation of both neurological and psychiatric disorders.
View Article and Find Full Text PDFBrain Behav
January 2025
Department of Anesthesiology & Clinical Research Center for Anesthesia and Perioperative Medicine & Key Laboratory of Anesthesia and Analgesia Application Technology, Huzhou Central Hospital, The Fifth School of Clinical Medicine of Zhejiang Chinese Medical University, Huzhou, China.
J Physiol
December 2024
Center for Advancing Neurotechnological Innovation to Application - CRANIA, University Health Network, Toronto, ON, Canada.
The central and peripheral nervous systems are specialized to conduct electrical currents that underlie behaviour. When this multidimensional electrical system is disrupted by degeneration, damage, or disuse, externally applied electrical currents may act to modulate neural structures and provide therapeutic benefit. The administration of electrical stimulation can exert precise and multi-faceted effects at cellular, circuit and systems levels to restore or enhance the functionality of the central nervous system by providing an access route to target specific cells, fibres of passage, neurotransmitter systems, and/or afferent/efferent communication to enable positive changes in behaviour.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!