Root-knot nematodes (RKNs; Meloidogyne spp.) and Ralstonia solanacearum, the causal agent of bacterial wilt, are major soilborne pathogens in U.S. tomato production. Methyl bromide has been used for decades to effectively manage RKN but its phase-out and the high cost of other effective fumigants such as 1,3-dichloropropene has resulted in a need to develop sustainable alternatives. Many of the commercially popular varieties used by the tomato industry do not have resistance to RKNs and R. solanacearum. Recent studies worldwide have shown the potential for grafting using resistant rootstocks as a sustainable and ecofriendly practice for R. solanacearum management. However, the effectiveness of R. solanacearum-resistant rootstocks on RKN management is not known. In this study, three commercially available R. solanacearum-resistant tomato rootstocks ('RST-04-106-T', 'BHN 998', and 'BHN 1054') were evaluated for resistance to Meloidogyne incognita in field tomato production in four field trials conducted for two consecutive years in two geographical locations: Florida and Virginia. Grafting rootstocks onto 'BHN 602' a tomato scion susceptible to bacterial wilt and RKNs, significantly reduced root galling caused by RKNs in all four field trials and increased yield in two of the trials compared with the nongrafted treatment. This study demonstrates the potential of grafting for managing multiple soilborne pathogens using the same rootstocks.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-13-0936-REDOI Listing

Publication Analysis

Top Keywords

tomato production
12
grafting rootstocks
8
ralstonia solanacearum
8
meloidogyne incognita
8
bacterial wilt
8
soilborne pathogens
8
potential grafting
8
field trials
8
tomato
6
rootstocks
5

Similar Publications

toxins (ATs) are a group of toxins produced by fungi that frequently contaminate tomatoes and tomato products. Recently, the European Food Safety Authority evaluated ATs for their genotoxic and carcinogenic properties. infestation is often controlled using ad hoc treatment strategies (fungicides).

View Article and Find Full Text PDF

Introduction: Potatoes and tomatoes are important Solanaceae crops that require effective disease monitoring for optimal agricultural production. Traditional disease monitoring methods rely on manual visual inspection, which is inefficient and prone to subjective bias. The application of deep learning in image recognition has led to object detection models such as YOLO (You Only Look Once), which have shown high efficiency in disease identification.

View Article and Find Full Text PDF

Deep learning enabled rapid classification of yeast species in food by imaging of yeast microcolonies.

Food Res Int

February 2025

Department of Food Science & Technology, University of California-Davis, Davis, CA 95616, USA; Department of Biological & Agricultural Engineering, University of California-Davis, Davis, CA 95616, USA. Electronic address:

Diverse species of yeasts are commonly associated with food and food production environments. The contamination of food products by spoilage yeasts poses significant challenges, leading to quality degradation and food loss. Similarly, the introduction of undesirable strains during fermentation can cause considerable challenges with the quality and progress of the fermentation process.

View Article and Find Full Text PDF

Hydrogen peroxide (HO) is a critical signaling molecule with significant roles in various physiological processes in plants. Understanding its regulation through in situ monitoring could offer deeper insights into plant responses and stress mechanisms. In this study, we developed a microneedle electrochemical sensor to monitor HO in situ, offering deeper insights into plant stress responses.

View Article and Find Full Text PDF

The present study included the environmentally friendly production of stable nickel nanoparticles (NiO NPs) using lemon and tomato, followed by their analysis and evaluation for their antibacterial properties against Pseudomonas aeruginosa, Escherichia coli, Staphylococcus aureus, and Bacillus cereus. The Nickel oxide nanoparticles produced exhibited their maximum absorption at 276 nm in the UV-vis spectrum. The image captured FESEM revealed smooth nanofibers with an average diameter of around 259 ± 3.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!