In 2011, a grower in Casey County, Kentucky, observed persistent yellow, green, and red mosaic patterns on leaves of highbush blueberry plants. Twenty-three randomly-scattered cv. Bluecrop plants out of approximately 1,400 5-year-old plants showed symptoms, with coverage on each plant ranging from 5 to 100%. Asymptomatic canes bloomed normally and produced fruit; affected canes were stunted and did not bloom. These symptoms are generally consistent with those described for blueberry mosaic disease (BMD) (1,3), the casual agent of which is Blueberry mosaic associated virus (BlMaV) (4). All plants were purchased from a local nursery, but their origin was unknown. In 2012, leaves from each of five symptomatic plants were tested by reverse transcription-polymerase chain reaction (RT-PCR) for BlMaV. Total nucleic acid was isolated from the symptomatic leaves, and asymptomatic leaves of randomly selected healthy plants served as negative controls. The CTAB method was used as described (2), and RNA was isolated using lithium chloride. cDNA was synthesized using the SuperScript VILO cDNA synthesis kit (Invitrogen, Carlsbad, CA). Two different primer sets were used for detection of BlMaV; BlMaVCP5'-1F (GGTTGATGGATGCTTACGAA) and BlMaVRNA3-1378R (CTTCACTTACCACATTATACATCTC) to amplify a 1,370-bp portion of RNA3 and RNA2-2F (TTCGATCCCAGCCCTCTCCC) and RNA2-2R (AGGCAAAGGGAAAGAAATTCAGGTGTC) to amplify a 1,281-bp portion of RNA2. All symptomatic samples tested by RT-PCR yielded a fragment for each primer set, and the amplicon sizes were as expected. No fragments were amplified from the negative controls. To further confirm diagnosis, the primer sets noted above were used to re-amplify the same two fragments from each of three of the samples. These fragments were cloned and sequenced on the CEQ8000 (Beckman-Coulter, Brea, CA) using the GenomeLab DTCS Quick Start sequencing kit (Beckman-Coulter) and the universal M13 forward and reverse primers as well as internal primers: BlMaV-CP Int 1F (ACAATTAAGAAGTCCTCGTAT), BlMaV-CP Int 2F (ATGTCCGGATGCTAGTCGCT), and BlMaV RNA2 IntR (GGTGGGGACGGAATAATACAGAG). All sequences were consistent with those now published for BlMaV, with 98% identity at the nucleic acid level for both fragments. In 2013, the grower removed plants with more than 50% symptomatic tissue, and no newly symptomatic plants were observed that year. Sixteen remaining symptomatic plants, as well as 36 asymptomatic plants adjacent to those with symptoms, were sampled and tested by RT-PCR. All symptomatic plants were confirmed to be infected with BlMaV, as well as 30 of the 36 asymptomatic plants. It has been suggested that newly infected plants may take a year to express symptoms (5), which may explain the finding of 30 infected but asymptomatic plants. This is the first report of an association of BIMaV with BMD in Kentucky. These results indicate that BMD can establish in Kentucky blueberry fields. References: (1) R. R. Martin et al. Viruses 4:2831-2852, 2012. (2) J. J. Polashock et al. Plant Pathol. 58:1116, 2009. (3) D. C. Ramsdell. In: Compendium of Blueberry and Cranberry Diseases. APS Press, St. Paul, MN, 1995. (4) T. Thekke-Veetil et al. Virus Res. 189:92, 2014. (5) E. H. Varney. Phytopathology 47:307, 1957.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-09-14-0946-PDNDOI Listing

Publication Analysis

Top Keywords

blueberry mosaic
16
symptomatic plants
16
plants
14
asymptomatic plants
12
mosaic disease
8
mosaic associated
8
associated virus
8
nucleic acid
8
negative controls
8
primer sets
8

Similar Publications

In recent years, the severity of plant diseases caused by plant pathogenic fungi and viruses has been on the rise. However, there is a limited availability of pesticide chemicals in the market for effectively controlling both fungal and viral infections. To solve this problem, a series of novel pyrimidine derivatives containing a 1,3,4-oxadiazole thioether fragment were synthesized.

View Article and Find Full Text PDF

A new sobemovirus, which we have named "mimosa mosaic virus" (MimMV), was found by high-throughput sequencing and isolated from a mimosa (Mimosa sensitiva L.) plant. The genome sequence was confirmed by Sanger sequencing and comprises 4595 nucleotides.

View Article and Find Full Text PDF

Southern highbush blueberry (interspecific hybrids of L.) is cultivated near wild as well as closely related species in Florida, USA. The expansion of blueberry cultivation into new areas in Florida and deployment of new cultivars containing viruses can potentially increase the diversity of viruses in wild and cultivated .

View Article and Find Full Text PDF

Synthetic promoters from blueberry red ringspot virus (BRRV).

Planta

May 2021

Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Nagar Road, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.

We analyzed the synthetic full-length transcript promoter of Blueberry red ringspot virus (BRRV) and developed two chimeric promoters (MBR3 and FBR3). Transcriptional activities of these chimeric promoters were found equivalent to that of the CaMV35S promoter. Chimeric promoters driven plant-derived PaDef protein showed high antimicrobial activities against several pathogens.

View Article and Find Full Text PDF

First report of Tobacco ringspot virus in highbush blueberry in Washington State.

Plant Dis

February 2021

Washington State University, Plant Pathology, Irrigated Agriculture Research Center, 24106 N. Bunn Road, Prosser, Washington, United States, 99350;

Since 2015, several blueberry plants () of cvs. Draper and Top Shelf in an organic farm in eastern Washington State showed reduced growth with deformed leaves displaying chlorotic spots, rings, and red blotches and producing small and poorly ripened berries. The symptomatic plants showed gradual decline within 2 to 3 years post-planting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!