Croton (Codiaeum variegatum (Linn.) var. pictum (Lodd.)) is an ornamental plant commonly grown in southern China. In March 2014, severe powdery mildew infections were observed on crotons in gardens of Hainan University (20.1°N and 110.3°E), Haikou, Hainan province. Disease incidence was estimated in a random batch of 100 plants in three replicates, with the average value approaching 80%. Symptoms first appeared as white circular patches on the adaxial surface and expanded to the abaxial surface, petioles, and stems. The top leaves were the most affected. Upper surfaces of the infected leaves were covered by white, dense mycelia. As the disease progressed, infected leaves turned purple on the lower surfaces and curly before becoming necrotic and abscising from the plant. Powdery mildew was more severe in shaded environments, especially during rainy or foggy weather in early spring. Two hundred conidiophores and conidia were observed microscopically. The conidiophores were straight or occasionally flexuous, 62.3 to 127.6 × 6.2 to 10.2 μm, consisting of two to three straight cells. Conidia were born in solitary on the top of conidiophores. Conidia were hyaline, ellipsoidal, 26.4 to 42.2 × 11.7 to 23.4 μm (average 32.5 × 16.5 μm), contained no distinct fibrosin bodies, and produced a subterminal germ tube. The wrinkling pattern of the outer walls of older conidia was angular or reticulated. Appressoria were single and multilobed. Cleistothecia were not observed. Based on morphological characteristics, the fungus was identified as Oidium neolycopersici (2), which was recently renamed Pseudoidium neolycopersici (L. Kiss) (3). The identity was confirmed by sequence analysis. Genomic DNA was extracted from the foliar powdery mildew colonies using Chelex-100 (Bio-Rad, Shanghai, China). The rDNA internal transcribed spacer (ITS) region was amplified with primers ITS1 and ITS4 (5). The ITS sequence of the representative isolates C01 (GenBank Accession No. KJ890378.1) and four other powdery mildew samples collected from crotons in Hainan University was 100% identical to that of P. neolycopersici isolates from tomato plants such as JQ972700 and AB163927. Inoculations were made by gently pressing diseased leaves onto leaves of five healthy plants of croton and tomato ('Money maker'). Five non-inoculated croton and tomato plants served as controls. Inoculated and non-inoculated plants were maintained in an incubator at 25°C with a 12-h photoperiod. After eight days, typical powdery mildew symptoms developed on 93% of the inoculated plants, while no symptom developed on the non-inoculated plants. The pathogenicity tests were repeated three times. The same fungus was always re-isolated from the diseased tissue according to Koch's postulates. The pathogenicity tests further confirmed that the pathogen from crotons is P. neolycopersici (Basionym. Oidium neolycopersici (KJ890378.1)), which is commonly known as the tomato powdery mildew. P. neolycopersici is also a pathogen of Normania triphylla (1) and papaya (4). To our knowledge, this is the first report of P. neolycopersici infecting croton. The avenue of this pathogen entering gardens of Hainan University remains unknown. The gardens are located far away from tomato farms. Also no symptom of powdery mildew on croton was observed during surveys in other locations in Haikou. The origin of the pathogen warrants additional research. References: (1) D. Delmail et al. Mycotaxon 113:269, 2010. (2) L. Kiss et al. Mycol. Res. 105:684, 2001. (3) L. Kiss et al. Mycol. Res. 115:612, 2011. (4) J. G. Tsay et al. Plant Dis. 95:1188, 2011. (5) T. J. White et al. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Academic Press, San Diego, CA, 1990.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1094/PDIS-09-14-0892-PDN | DOI Listing |
Plant Dis
January 2025
State Fruit Experiment Station, Missouri State University, Mountain Grove, Missouri, United States;
Powdery mildew, caused by the fungus , is one of the primary causes of grape yield loss across the globe. While numerous resistance loci have been identified in various grapevine species, the genetic determinants of susceptibility to remain largely unexplored. Understanding the genetics of susceptibility for pathogenesis is equally important for developing durable resistance grapevines against this pathogen.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
University of Cologne, Institute for Plant Sciences, Cologne, Germany.
Pathogens manipulate host physiology through the secretion of virulence factors (effectors) to invade and proliferate on the host. The molecular functions of effectors inside plant hosts have been of interest in the field of molecular plant-microbe interactions. Obligate biotrophic pathogens, such as rusts and powdery mildews, cannot proliferate outside of plant hosts.
View Article and Find Full Text PDFPest Manag Sci
January 2025
Dpto. Microbiología, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain.
Background: Chitin is a crucial component of fungal cell walls and an effective elicitor of plant immunity; however, phytopathogenic fungi have developed virulence mechanisms to counteract the activation of this plant defensive response. In this study, the molecular mechanism of chitin-induced suppression through effectors involved in chitin deacetylases (CDAs) and their degradation (EWCAs) was investigated with the idea of developing novel dsRNA-biofungicides to control the cucurbit powdery mildew caused by Podosphaera xanthii.
Results: The molecular mechanisms associated with the silencing effect of the PxCDA and PxEWCAs genes were first studied through dsRNA cotyledon infiltration assays, which revealed a ≈80% reduction in fungal biomass and a 50% decrease in gene expression.
Int J Mol Sci
December 2024
Yantai Key Laboratory of Characteristic Agricultural Biological Resources Conservation and Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai 264005, China.
Powdery mildew, caused by f. sp. (), is a disease that seriously harms wheat production and occurs in all wheat-producing areas around the world.
View Article and Find Full Text PDFFood Res Int
January 2025
College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China. Electronic address:
Indigenous microorganisms play a crucial role in determining the quality of naturally fermented wines. However, the impact of grape cultivar specificity on microbial composition is often overshadowed by the geographical location of the vineyard, leading to underestimation of its role in natural wine fermentation. Therefore, this study focuses on different grape cultivars within a single vineyard.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!