Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Tropical deforestation is one of the most pressing threats to biodiversity, and substantially reduces ecosystem services at the global scale. Little is known however about the global spatial distribution of the actors behind tropical deforestation. Newly available maps of global cropland field size offer an opportunity to gain understanding towards the spatial distribution of tropical deforestation actors. Here we use a map of global cropland field size and combine it with maps of forest loss to study the spatial association between field size and deforestation while accounting for other anthropogenic and geographical drivers of deforestation. We then use linear mixed-effects models and bootstrapping to determine what factors affect field sizes within deforested areas across all countries in the global tropics and subtropics. We find that field size within deforested areas is largely determined by country-level effects indicating the importance of socio-economic, cultural and institutional factors on the distribution of field sizes. Typically, small field sizes appear more commonly in deforested areas in Africa and Asia while the association was with larger field sizes in Australia and the Americas. In general, we find that smaller field sizes are associated with deforestation in protected areas and large field sizes with areas with lower agricultural value, although these results have low explanatory power. Our results suggest that the spatial patterns of actors behind deforestation are aggregated geographically which could help target conservation and sustainable land-use strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353091 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0209918 | PLOS |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!