Background: Resistant starch is a prebiotic metabolized by the gut bacteria. It has been shown to attenuate chronic kidney disease (CKD) progression in rats. Previous studies employed taxonomic analysis using 16S rRNA sequencing and untargeted metabolomics profiling. Here we expand these studies by metaproteomics, gaining new insight into the host-microbiome interaction.

Methods: Differences between cecum contents in CKD rats fed a diet containing resistant starch with those fed a diet containing digestible starch were examined by comparative metaproteomics analysis. Taxonomic information was obtained using unique protein sequences. Our methodology results in quantitative data covering both host and bacterial proteins.

Results: 5,834 proteins were quantified, with 947 proteins originating from the host organism. Taxonomic information derived from metaproteomics data surpassed previous 16S RNA analysis, and reached species resolutions for moderately abundant taxonomic groups. In particular, the Ruminococcaceae family becomes well resolved-with butyrate producers and amylolytic species such as R. bromii clearly visible and significantly higher while fibrolytic species such as R. flavefaciens are significantly lower with resistant starch feeding. The observed changes in protein patterns are consistent with fiber-associated improvement in CKD phenotype. Several known host CKD-associated proteins and biomarkers of impaired kidney function were significantly reduced with resistant starch supplementation. Data are available via ProteomeXchange with identifier PXD008845.

Conclusions: Metaproteomics analysis of cecum contents of CKD rats with and without resistant starch supplementation reveals changes within gut microbiota at unprecedented resolution, providing both functional and taxonomic information. Proteins and organisms differentially abundant with RS supplementation point toward a shift from mucin degraders to butyrate producers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6353070PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0199274PLOS

Publication Analysis

Top Keywords

resistant starch
24
starch supplementation
12
chronic kidney
8
kidney disease
8
progression rats
8
cecum contents
8
contents ckd
8
ckd rats
8
fed diet
8
metaproteomics analysis
8

Similar Publications

Xylem plasticity is important for trees to coordinate hydraulic efficiency and safety under changing soil water availability. However, the physiological and transcriptional regulations of cambium on xylem plasticity are not well understood. In this study, mulberry saplings of drought-resistant Wubu and drought-susceptible Zhongshen1 were subjected to moderate or severe drought stresses for 21 days and subsequently rewatered for 12 days.

View Article and Find Full Text PDF

High hydrostatic pressure modulates the digestive properties of rice starch-gallic acid composites by boosting non-inclusion complexation.

Int J Biol Macromol

December 2024

Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne NE1 8ST, Tyne & Wear, England, United Kingdom. Electronic address:

Influencing the starch postprandial glycemia via interventions that are sourced from natural plant materials has gained attention recently. Amylose present in starch is reported to form complexes with small ligands such as gallic acid (GA) through a conformational change that are digested slowly and contribute to the formation of resistant starch. In this study, the molecular interactions, multi-scale structure and in vitro digestion properties of normal neat rice starch and rice starch-GA composites (2, 5 % w/v) obtained either by high hydrostatic pressure (HHP) or thermal (T) treatment were compared.

View Article and Find Full Text PDF

Effects of high hydraulic pressure on the short-term retrogradation and digestive properties of Lonicern caerulea berry polyphenol-chestnut starch complexes.

Int J Biol Macromol

December 2024

Engineering Research Center of Chestnut Industry Technology of the Ministry of Education, College of Food Science & Technology, Hebei Normal University of Science and Technology, Qinhuangdao, Hebei 066004, China.

Both fresh and processed Chinese chestnuts are susceptible to retrograde hardening, affecting their texture, flavor, and shelf life because of their high starch content. To reduce the short-term retrogradation of chestnut starch during the food processing of chestnut-based products, a complex of Lonicern caerulea berry polyphenols (LCBP) and chestnut starch (CS) was prepared using high hydraulic pressure (HHP). The results showed that LCBP reduced the water separation rate, hardness, elasticity, and short-range order of retrograde CS under HHP and improved light transmission.

View Article and Find Full Text PDF

The effects of wheat bran dietary fiber (WBDF) treated by air flow micro-pulverization on gelatinization, thermal, rheological, structural properties, and in vitro digestion of wheat starch (WS) were investigated. Different particle sizes of WBDF were obtained by conventional knife grinding and airflow micro-grinding. Compared with conventional knife grinding, the particle size of WBDF treated by air flow micro-pulverization decreased, the particle size distribution was concentrated at small particle sizes, the specific surface area increased, and the hydraulic and oil-holding power decreased, which was mainly related to the change of WBDF spatial structure and the increase of solubility.

View Article and Find Full Text PDF

Static magnetic field (SMF), an innovative and eco-friendly technology, has attracted widespread attention in the field of modified starch physicochemical properties. This study aimed to investigate the effects of SMF treatment on the structural and digestive properties of germinated corn (GC) starch. In vitro digestibility examination of GC starch revealed that SMF treatment (30 mT, 2 h) led to a 12.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!