A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Unraveling the Correlation between Structures of Carbon Nanospheres Derived from Polymeric Spheres and Their Electrochemical Performance to Achieve High-Rate Supercapacitors. | LitMetric

Understanding correlation between the nanostructure of porous carbons and their ion transport behavior is critical for achieving high-performance supercapacitors. Herein, the relationship between size and shell thickness of carbon nanospheres (CNSs) and capacitive electrochemical performance is clarified. Structural uniform CNSs with controlled diameters, prepared via template-free interfacial copolymerization, are emerging as an ideal platform for investigating the ion transport behavior. It is found that ionic transport is significantly enhanced while the introduction of hollow cores with thinner shell, by virtue of the hollow nanopore-accelerated mass transport to reduce ion diffusion length. The proof-of-concept supercapacitors, constituted of carbons with diameter and shell thickness of 91 and 28 nm, respectively, can maintain highest capacitance retention ratio of 86% at a high sweep rate of 300 mVs , also far outperforming the commercial activated carbon in terms of capacitance, rate capability, and surface efficiency, promising a brilliant application.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.201800770DOI Listing

Publication Analysis

Top Keywords

carbon nanospheres
8
electrochemical performance
8
ion transport
8
transport behavior
8
shell thickness
8
unraveling correlation
4
correlation structures
4
structures carbon
4
nanospheres derived
4
derived polymeric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!