The term B-factor, sometimes called the Debye-Waller factor, temperature factor, or atomic displacement parameter, is used in protein crystallography to describe the attenuation of X-ray or neutron scattering caused by thermal motion. This review begins with analyses of early protein studies which suggested that B-factors, available from the Protein Data Bank, can be used to identify the flexibility of atoms, side chains, or even whole regions. This requires a technique for obtaining normalized B-factors. Since then the exploitation of B-factors has been extensively elaborated and applied in a variety of studies with quite different goals, all having in common the identification and interpretation of rigidity, flexibility, and/or internal motion which are crucial in enzymes and in proteins in general. Importantly, this review includes a discussion of limitations and possible pitfalls when using B-factors. A second research area, which likewise exploits B-factors, is also reviewed, namely, the development of the so-called B-FIT-directed evolution method for increasing the thermostability of enzymes as catalysts in organic chemistry and biotechnology. In both research areas, a maximum of structural and mechanistic insights is gained when B-factor analyses are combined with other experimental and computational techniques.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.chemrev.8b00290 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!