Background: Gamma-ray irradiation could significantly induce widespread apoptosis in corneas and reduced the allogenicity of donor cornea. And the X-rays may have similar biological effects. The feasibility and effects of X-ray-irradiated corneal lamellae have not been assessed yet.
Methods: Different doses (10 gray unit (Gy), 20 Gy, 50 Gy, 100 Gy) of X-ray irradiated corneal lamellae were collected from SMILE surgery. These corneal lamellae were assessed by physical characterization, hematoxylin and eosin (H-E) staining, Masson's staining, TdT-mediated dUTP nick end labeling (TUNEL), cell viability assay and transmission electron microscopy (TEM). We selected the optimum dose (100Gy) to treat the corneal lamellae to be the grafts. The human grafts and fresh allogeneic monkey corneal lamellae were implanted into rhesus monkeys via the small incision femtosecond laser-assisted surgery, respectively. Clinical examinations and the immunostaining were performed after surgery.
Results: There were no significant changes in the transparency of the corneal lamellae, but the absorbency of the corneal lamellae was increased. According to the H-E and Masson's staining results, irradiation had little impact on the corneal collagen. The TUNEL assay and cell viability assay results showed that 100Gy X-ray irradiation resulted in complete apoptosis in the corneal lamellae, which was also confirmed by TEM observations. In the following animal model study, no immune reactions or severe inflammatory responses occurred, and the host corneas maintained transparency for 24 weeks of observation. And the expression of CD4 and CD8 were negative in the all host corneas.
Conclusion: X-ray irradiated corneal lamellae could serve as a potential material for xenogeneic inlay, and the small incision femtosecond laser-assisted implantation has the potential to become a new corneal transplantation surgical approach.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463400 | PMC |
http://dx.doi.org/10.2174/1566524019666190129123935 | DOI Listing |
Adv Healthc Mater
January 2025
Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany.
Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates.
View Article and Find Full Text PDFOrbit
January 2025
Department of Ophthalmology, Otorhinolaryngology and Head and Neck Surgery, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil.
Ablepharon macrostomia syndrome is a rare congenital disorder caused by autosomal-dominant mutations. This condition is characterized by redundant skin, low-set ears, macrostomia, ambiguous genitalia, and underdevelopment of the both upper and lower eyelids. The shortening of the anterior lamella, septum and levator aponeurosis lead to a severe corneal exposure within the first hours of life.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Singapore National Eye Center, Singapore 168751, Singapore.
We describe retrospectively the indications and outcomes of nine patients who present with varying degrees of deep posterior stromal scarring or endothelial failure following deep anterior lamellar keratoplasty (DALK). These patients underwent a surgical strategy coined Intraoperative Optical Coherence Tomography Guided Femtosecond Laser-Assisted Descemet Membrane Endothelial Keratoplasty (iFAD). This strategy can be used to address suboptimal visual outcomes following primary DALK.
View Article and Find Full Text PDFBiomimetics (Basel)
December 2024
Center for Advanced Eye Care, Vero Beach, FL 32960, USA.
We have compared the biomechanical properties of human and porcine corneas using vibrational optical coherence tomography (VOCT). The elastic modulus of the cornea has been previously reported in the literature to vary from about several kPa to more than several GPa based on the results of different techniques. In addition, the formation of corneal cones near the central cornea in keratoconus has been observed in the clinic.
View Article and Find Full Text PDFSmall
December 2024
National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, Sichuan, 610065, China.
Collagen as the main structural component of the cornea exhibits unique and highly organized fibril lamellae, which contribute to the maintenance of corneal structure and transparency. Nevertheless, collagen assembly in vitro to create ideal artificial corneal substitutes with human cornea comparable thickness and optics is still limited. Here, glycerol as a regulator can reconcile collagen thickness, transparency, and permeability, a conflicting goal by current keratoprosthesis strategies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!