Natural dietary ingredients like flavonoids are important for body improvement against diseases. The flavonol rutin is widely found in fruits and vegetables and shows significant anticancer properties. However, the underlined signaling pathways have not been elucidated yet. In this study, the impacts of various doses of rutin (400-700 mM/ml) have been examined on human colon cancer SW480 cells metabolism, cell cycle, and apoptosis. The transcriptome was analyzed by bioinformatics tools and the interactions between rutin modulated microRNAs (miRNAs), long noncoding RNAs (lncRNAs), messenger RNAs (mRNAs), and transcription factors (TFs) were built, filtered and enriched. A dose of 600 mM of rutin significantly decreased cells metabolic activity, halved the population and arrested the cell cycle at the sub-G1 phase. The enrichment analysis of miRNAs-lncRNAs-mRNAs-TFs network showed that these effects were mediated through alteration of glucose, lipid, and protein metabolism, modulating endoplasmic reticulum stress responses, negative regulation of cell cycle process, and inducing the extrinsic and intrinsic apoptotic signaling pathways. Additionally, the key parent nodes of each annotation were illustrated. These findings create a detailed image of rutin underlying intracellular signaling pathways in CRC and also help us to better understand the role of dietary natural compounds in cancer treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.28204DOI Listing

Publication Analysis

Top Keywords

signaling pathways
16
cell cycle
12
detailed image
8
image rutin
8
rutin underlying
8
underlying intracellular
8
intracellular signaling
8
rutin
6
signaling
4
pathways
4

Similar Publications

Introduction: The traditional Chinese medicine formula, Bushen Daozhuo Granules (BSDZG), is used to treat chronic non-bacterial prostatitis (CNP) clinically. However, its mechanism of action is unclear. The aim of our study was to determine the effect of BSDZG on CNP and its underlying mechanisms.

View Article and Find Full Text PDF

TSPOAP1-AS1: A Novel Biomarker for the Prognosis and Therapeutic Target in Cervical Cancer.

Comb Chem High Throughput Screen

January 2025

Thoracic and Abdominal Radiotherapy Department I, Meizhou People's Hospital, Meizhou 514031, Guangdong, China.

Background: TSPOAP1 antisense RNA 1 (TSPOAP1-AS1) is a long non-coding RNA (lncRNA) that has received widespread attention in oncology research in recent years. Its role and mechanism in some cancers have gradually been revealed. However, it is not clear what role TSPOAP1-AS1 plays in cervical cancer (CESC).

View Article and Find Full Text PDF

Background: Shengyang Yiwei Decoction showed efficacy in idiopathic membranous nephropathy treatment, and this study aimed to assess the underlying molecular mechanisms.

Methods: Rats with passive Heymann nephritis were divided into the model group, the Shengyang Yiwei Decoction group, the JAK2 inhibitor group, and the STAT3 inhibitor group. Healthy rats served as the normal control.

View Article and Find Full Text PDF

Shuanghuanglian (SHL) and its primary constituents have demonstrated protective effects against allergenic diseases. This review examines the anaphylactic and anti-allergenic activities of SHL and its constituents. We also discuss potential avenues for future research, particularly regarding the expansion of the clinical applications of SHL formulations (oral or nebulized) for the treatment of allergenic disorders.

View Article and Find Full Text PDF

Aims: This study aims to identify and evaluate promising therapeutic proteins and compounds for breast cancer treatment through a comprehensive database search and molecular docking analysis.

Background: Breast cancer (BC), primarily originating from the terminal ductal-lobular unit of the breast, is the most prevalent form of cancer globally. In 2020, an estimated 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!