Duck/fish polyculture farming is a typical farming model in the Pearl River delta in southern China. We examined soil, water, and sediment samples from three duck-fish farms in Guangdong Province in September and December 2014. We determined the abundance of three metal resistance genes, 16S rDNA, and 23 antibiotic resistance genes encoding resistance to tetracycline, sulfonamides, quinolones, chloramphenicol, and β-lactamases. Microbial community structure was quantified by Illumina high-throughput sequencing of 16S rDNA genes. We found a prevalence of antibiotic resistance genes and the sul1, sul2, tetA, tetM, aac(6')-Ib, and floR genes were the most abundant. Levels of Cu and Zn were significantly correlated with numerous ARG types and sul2, floR, and tetM were identified as potential antibiotic resistance gene indicators. Cu levels were significantly and positively correlated with the relative abundance of sul3, tetT, tetW, qnrB, qnrS, fexB, sul1, sul2, tetM, and qnrA. Zn was significantly correlated to relative abundance of sul2, sul3, tetM, tetA, tetT, tetW, qnrA, qnrB, qnrS, aac(6')-Ib, qepA, bla, cmlA, floR, fexA, cfr, and fexB. The levels of Acinetobacter, Brevibacillus, and Wautersiella showed significant positive correlations with metal resistance genes as well as qnrB, oqxA, oqxB, and bla (p > 0.8). Sphingobacterium, Flavobacterium, Acidothermus, and Corynebacterium had significant correlations with abundance of tetracycline resistance genes, sulfonamide resistance genes, bla, bla, and cfr (p > 0.8). Sphingobacterium, Flavobacterium, Acidothermus, and Corynebacterium were most abundant in soil samples while Acinetobacter, Brevibacillus, and Wautersiella were most abundant in water samples. Dissemination of antibiotic resistance genes in aquaculture environments is extensive and tracing their origins is necessary to establish risk assessment methods required for aquatic environmental protection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-018-04065-2 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.
Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Agricultural Production, College of Agricultural and Environmental Sciences, Makerere University, Kampala, Uganda.
Soybean is a globally important industrial, food, and cash crop. Despite its importance in present and future economies, its production is severely hampered by bruchids (Callosobruchus chinensis), a destructive storage insect pest, causing considerable yield losses. Therefore, the identification of genomic regions and candidate genes associated with bruchid resistance in soybean is crucial as it helps breeders to develop new soybean varieties with improved resistance and quality.
View Article and Find Full Text PDFPLoS One
January 2025
Foot and Mouth Disease Department, National Veterinary Research Institute, Vom, Plateau State, Nigeria.
The global public health risk posed by Salmonella Kentucky (S. Kentucky) is rising, particularly due to the dissemination of antimicrobial resistance genes in human and animal populations. This serovar, widespread in Africa, has emerged as a notable cause of non-typhoidal gastroenteritis in humans.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Traditional Chinese Medicine, Shanghai Fourth People's Hospital Affiliated to Tongji University of Medicine, Shanghai, China.
Based on network pharmacology and molecular docking methods, this study explored its active compounds and confirmed its potential mechanism of action against Hand-foot skin reaction induced by tumor-targeted drugs. Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform and UniProt Database were used to obtain the active ingredients and target proteins of Spatholobi Caulis. All hand-foot skin reaction (HFSR)-related targets were obtained with the help of the Human Gene Database, Online Mendelian Inheritance in Humans (OMIM), DisGeNET and DrugBank databases.
View Article and Find Full Text PDFJ ECT
January 2025
Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, Brescia.
Objectives: Electroconvulsive therapy (ECT) is one of the most effective treatments for treatment-resistant depression (TRD), even though the molecular mechanisms underlying its efficacy remain largely unclear. This study aimed, for the first time, to analyze plasma levels of miRNAs, key regulators of gene expression, in TRD patients undergoing ECT to investigate potential changes during treatment and their associations with symptom improvement.
Methods: The study involved 27 TRD patients who underwent ECT.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!