Purpose: To evaluate the use of Ga-PSMA PET/CT for monitoring response to Lu-617 PSMA radioligand therapy in patients with metastatic castrate-resistant prostate cancer (mCRPC).

Methods: Patients from the University Hospital Bonn and the University Hospital Aachen were retrospectively reviewed for this study. We included 48 patients with mCRPC who were treated with Lu-PSMA-617 and whose records included Ga-PSMA PET/CT imaging before the first and after the third or fourth treatment cycle. A treatment response based on Ga-PSMA PET/CT was defined according to a modified version of the PERCIST criteria. A decline in PSA level of ≥50% was considered the reference standard. The sensitivity, specificity, positive and negative predictive values, and ROC curves were calculated, and patient survival times in relation to the PET results were also analysed.

Results: Ga-PSMA PET/CT had a sensitivity of about 85% and a specificity of between 55% and 65%. The negative and positive predictive values ranged between 70% and 78%. The fitted ROC area was 0.70. The survival time was about 19.6 months in patients with a treatment response, while nonresponders had a survival time of about 15.9 months. However, this difference between the groups was not statistically significant.

Conclusion: Our results indicate that Ga-PSMA PET/CT could be a useful tool for the evaluation of response to Lu-PSMA-617 radioligand therapy within a theranostic framework.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00259-019-4258-6DOI Listing

Publication Analysis

Top Keywords

ga-psma pet/ct
24
radioligand therapy
12
pet/ct monitoring
8
monitoring response
8
response lu-psma-617
8
lu-psma-617 radioligand
8
therapy patients
8
patients metastatic
8
prostate cancer
8
university hospital
8

Similar Publications

Purpose: The positron range effect can impair PET image quality of Gallium-68 (Ga). A positron range correction (PRC) can be applied to reduce this effect. In this study, the effect of a tissue-independent PRC for Ga was investigated on patient data.

View Article and Find Full Text PDF

Investigating the significance of SPECT/CT-SUV for monitoring Lu-PSMA-targeted radionuclide therapy: a systematic review.

BMC Med Imaging

January 2025

Department of Radiological Sciences, College of Health and Rehabilitation Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia.

Background: Quantitative molecular imaging via single-photon emission computed tomography-derived standardised uptake value (SPECT/CT-SUV) is used to assess the response of metastatic castration-resistant prostate cancer (mCRPC) patients to targeted radionuclide therapy (TRT) with [Lu]Lu-PSMA. This imaging technique determines the radiopharmaceutical distribution and internal dosimetry in patients who receive TRT. However, there is limited evidence regarding the role of image quantification in monitoring changes induced by [Lu]Lu-PSMA.

View Article and Find Full Text PDF

Background: The comparative diagnostic performance of Gallium (Ga)-PSMA-11 PET/CT and Ga-PSMA-11 PET/MRI in detecting bone metastases in prostate cancer (PCa) remains unclear.

Purpose: To systematically evaluate the early detection rate of biochemical recurrent (BCR) bone metastasis in PCa utilizing Ga-PSMA-11 PET/CT and Ga-PSMA-11 PET/MRI.

Material And Methods: We searched PubMed, Embase, and Web of Science for relevant articles up to April 2023 and extracted studies that examined the positivity rate of both Ga-PSMA-11 PET/CT and Ga-PSMA-11 PET/MRI in the context of the BCR bone metastasis of PCa patients.

View Article and Find Full Text PDF

Purpose: To develop and validate a prostate-specific membrane antigen (PSMA) PET/CT based multimodal deep learning model for predicting pathological lymph node invasion (LNI) in prostate cancer (PCa) patients identified as candidates for extended pelvic lymph node dissection (ePLND) by preoperative nomograms.

Methods: [Ga]Ga-PSMA-617 PET/CT scan of 116 eligible PCa patients (82 in the training cohort and 34 in the test cohort) who underwent radical prostatectomy with ePLND were analyzed in our study. The Med3D deep learning network was utilized to extract discriminative features from the entire prostate volume of interest on the PET/CT images.

View Article and Find Full Text PDF

Focal therapy offers a promising approach for treating localized prostate cancer (PC) with minimal invasiveness and potential cost benefits. High-intensity focused ultrasound (HIFU) and brachytherapy (BT) are among these options but lack long-term efficacy data. Patient follow-ups typically use biopsies and multiparametric MRI (mpMRI), which often miss recurrences.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!