Inbreeding depression, the deterioration in mean trait value in progeny of related parents, is a fundamental quantity in genetics, evolutionary biology, animal and plant breeding, and conservation biology. The magnitude of inbreeding depression can be quantified by the inbreeding load, typically measured in numbers of lethal equivalents, a population genetic quantity that allows for comparisons between environments, populations or species. However, there is as yet no quantitative assessment of which combinations of statistical models and metrics of inbreeding can yield such estimates. Here, we review statistical models that have been used to estimate inbreeding load and use population genetic simulations to investigate how unbiased estimates can be obtained using genomic and pedigree-based metrics of inbreeding. We use simulated binary viability data (i.e., dead versus alive) as our example, but the concepts apply to any trait that exhibits inbreeding depression. We show that the increasingly popular generalized linear models with logit link do not provide comparable and unbiased population genetic measures of inbreeding load, independent of the metric of inbreeding used. Runs of homozygosity result in unbiased estimates of inbreeding load, whereas inbreeding measured from pedigrees results in slight overestimates. Due to widespread use of models that do not yield unbiased measures of the inbreeding load, some estimates in the literature cannot be compared meaningfully. We surveyed the literature for reliable estimates of the mean inbreeding load from wild vertebrate populations and found an average of 3.5 haploid lethal equivalents for survival to sexual maturity. To obtain comparable estimates, we encourage researchers to use generalized linear models with logarithmic links or maximum-likelihood estimation of the exponential equation, and inbreeding coefficients calculated from runs of homozygosity, provided an assembled reference genome of sufficient quality and enough genetic marker data are available.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6346663PMC
http://dx.doi.org/10.1111/eva.12713DOI Listing

Publication Analysis

Top Keywords

inbreeding load
28
inbreeding
16
lethal equivalents
12
inbreeding depression
12
population genetic
12
load inbreeding
8
statistical models
8
metrics inbreeding
8
unbiased estimates
8
generalized linear
8

Similar Publications

Population genomics reveals strong impacts of genetic drift without purging and guides conservation of bull and giant kelp.

Curr Biol

January 2025

University of Victoria, Department of Biology, Finnerty Road, Victoria, BC V8P 5C2, Canada; The Kelp Rescue Initiative, Bamfield Marine Sciences Centre, Pachena Road, Bamfield, BC V0R 1B0, Canada. Electronic address:

Kelp forests are declining in many parts of the northeast Pacific. In small populations, genetic drift can reduce adaptive variation and increase fixation of recessive deleterious alleles, but natural selection may purge harmful variants. To understand evolutionary dynamics and inform restoration strategies, we investigated genetic structure and the outcomes of genetic drift and purging by sequencing the genomes of 429 bull kelp (Nereocystis luetkeana) and 211 giant kelp (Macrocystis sp.

View Article and Find Full Text PDF

Background: The magnitude of inbreeding depression depends on the recessive burden of the individual, which can be traced back to the hidden (recessive) inbreeding load among ancestors. However, these ancestors carry different alleles at potentially deleterious loci and therefore there is individual variability of this inbreeding load. Estimation of the additive genetic value for inbreeding load is possible using a decomposition of inbreeding in partial inbreeding components due to ancestors.

View Article and Find Full Text PDF

The reduced genetic diversity and frequent inbreeding associated with small population size may underpin the accumulation and expression of deleterious mutations (mutation load) in some declining populations. However, demographic perturbations and inbreeding coupled with purifying selection can also purge declining populations of deleterious mutations, leading to intriguing recoveries. To better understand the links between deleterious genetic variation and population status, we assess patterns of genetic diversity, inbreeding, and mutation load across the genomes of three species of whale with different demographic histories and recoveries following the end of commercial whaling in the 1980s.

View Article and Find Full Text PDF

The field of conservation genomics is becoming increasingly interested in whether, and how, structural variant (SV) genotype information can be leveraged in the management of threatened species. The functional consequences of SVs are more complex than for single nucleotide polymorphisms (SNPs), as SVs typically impact a larger proportion of the genome due to their size and thus may be more likely to contribute to load. While the impacts of SV-specific genetic load may be less consequential for large populations, the interplay between weakened selection and stochastic processes means that smaller populations, such as those of the threatened Aotearoa hihi/New Zealand stitchbird (Notiomystis cincta), may harbour a high SV load.

View Article and Find Full Text PDF

To ensure the success of genetic rescue, we must minimise the potential negative effects of outbreeding depression that may arise from selecting source populations. The difficulty in assessing the likelihood of outbreeding depression has hindered its consideration in endangered species conservation. However, genomic research offers feasible indications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!