Autoimmune Diabetes Mellitus (DM) is a chronic disease caused by the selective destruction of insulin producing beta cells in human pancreas. DM is characterized by the presence of autoantibodies that bind a variety of islet-cell antigens. The 65 kDa isoform of glutamate decarboxylase (GAD65) is a major autoantigen recognized by these autoantibodies. Autoantibodies to GAD65 (GADA) are considered predictive markers of the disease when tested in combination with other specific autoantibodies. In order to produce reliable immunochemical tests for large scale screening of autoimmune DM, large amounts of properly folded GAD65 are needed. Herein, we report the production of human GAD65 using the baculovirus expression system in two species of larvae, Rachiplusia nu and Spodoptera frugiperda. GAD65 was identified at the expected molecular weight, properly expressed with high yield and purity in both larvae species and presenting appropriate enzymatic activity. The immunochemical ability of recombinant GAD65 obtained from both larvae to compete with [S]GAD65 was assessed qualitatively by incubating GADA-positive patients' sera in the presence of 1 μM of the recombinant enzyme. All sera tested became virtually negative after incubation with antigen excess. Besides, radiometric quantitative competition assays with GADA-positive patients' sera were performed by adding recombinant GAD65 (0.62 nM-1.4 µM). All dose response curves showed immunochemical identity between proteins. In addition, a bridge-ELISA for the detection of GADA was developed using S. frugiperda-GAD65. This assay proved to have 77.3% sensitivity and 98.2% of specificity. GAD65 could be expressed in insect larvae, being S. frugiperda the best choice due to its high yield and purity. The development of a cost effective immunoassay for the detection of GADA was also afforded.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6351654 | PMC |
http://dx.doi.org/10.1038/s41598-018-35744-2 | DOI Listing |
Waste Manag
January 2025
Guangdong Provincial Key Lab of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China; Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology/ Guangxi Collaborative Innovation Center of Modern Sericulture and Silk, Hechi University, Hechi 546300, China. Electronic address:
Sericulture waste poses significant challenges to industrial and environmental safety. Black soldier fly larvae (BSFL) offer a promising solution for organic waste management by converting it into insect protein. This study aimed to develop a microbial fermented method for utilizing sericulture waste to feed BSFL and explore the underlying mechanisms.
View Article and Find Full Text PDFModification and deterioration of old-growth forests by industrial forestry have seriously threatened species diversity worldwide. The loss of natural habitats increases the concentration of circulating glucocorticoids and incurs chronic stress in animals, influencing the immune system, growth, survival, and lifespan of animals inhabiting such areas. In this study, we tested whether great tit () nestlings grown in old-growth unmanaged coniferous forests have longer telomeres than great tit nestlings developing in young managed coniferous forests.
View Article and Find Full Text PDFBMC Biol
January 2025
Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy.
Background: Deformed wing virus (DWV) is a major honey bee pathogen that is actively transmitted by the parasitic mite Varroa destructor and plays a primary role in Apis mellifera winter colony losses. Despite intense investigation on this pollinator, which has a unique environmental and economic importance, the mechanisms underlying the molecular interactions between DWV and honey bees are still poorly understood. Here, we report on a group of honey bee proteins, identified by mass spectrometry, that specifically co-immunoprecipitate with DWV virus particles.
View Article and Find Full Text PDFMalar J
January 2025
Centre for Biotechnology Research and Development, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya.
Background: The current study sought to re-evaluate malaria prevalence, susceptibility to artemisinin-based combination therapy (ACT), transmission patterns and the presence of malaria vectors in the Kikuyu area of the Kenyan Central highlands, a non-traditional/low risk malaria transmission zone where there have been anecdotal reports of emerging malaria infections.
Methods: Sampling of adult mosquitoes was done indoors, while larvae were sampled outdoors in June 2019. The malaria clinical study was an open label non-randomized clinical trial where the efficacy of one ACT drug, was evaluated in two health facilities.
Infect Dis Poverty
January 2025
Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, 50200, Thailand.
Background: The cytochrome P450s-mediated metabolic resistance and the target site insensitivity caused by the knockdown resistance (kdr) mutation in the voltage-gated sodium channel (vgsc) gene were the main mechanisms conferring resistance to deltamethrin in Culex quinquefasciatus from Thailand. This study aimed to investigate the expression levels of cytochrome P450 genes and detect mutations of the vgsc gene in deltamethrin-resistant Cx. quinquefasciatus populations in Thailand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!