This paper proposes a theoretical framework for the biological learning mechanism as a general learning system. The proposal is as follows. The bursting and tonic modes of firing patterns found in many neuron types in the brain correspond to two separate modes of information processing, with one mode resulting in awareness, and another mode being subliminal. In such a coding scheme, a neuron in bursting state codes for the highest level of perceptual abstraction representing a pattern of sensory stimuli, or volitional abstraction representing a pattern of muscle contraction sequences. Within the 50-250 ms minimum integration time of experience, the bursting neurons form synchrony ensembles to allow for binding of related percepts. The degree which different bursting neurons can be merged into the same synchrony ensemble depends on the underlying cortical connections that represent the degree of perceptual similarity. These synchrony ensembles compete for selective attention to remain active. The dominant synchrony ensemble triggers episodic memory recall in the hippocampus, while forming new episodic memory with current sensory stimuli, resulting in a stream of thoughts. Neuromodulation modulates both top-down selection of synchrony ensembles, and memory formation. Episodic memory stored in the hippocampus is transferred to semantic and procedural memory in the cortex during rapid eye movement sleep, by updating cortical neuron synaptic weights with spike timing dependent plasticity. With the update of synaptic weights, new neurons become bursting while previous bursting neurons become tonic, allowing bursting neurons to move up to a higher level of perceptual abstraction. Finally, the proposed learning mechanism is compared with the back-propagation algorithm used in deep neural networks, and a proposal of how the credit assignment problem can be addressed by the current theory is presented.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.mehy.2018.12.001 | DOI Listing |
ACS Appl Bio Mater
January 2025
Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
This study examines the relationship between chondroitin sulfate, proteinoids, and computational neuron models, with a specific emphasis on the Izhikevich neuron model. We investigate the effect of chondroitin sulfate-proteinoid complexes on the behavior and dynamics of simulated neurons. Through the use of computational simulations, we provide evidence that these biomolecular components have the power to regulate the responsiveness of neurons, the patterns of their firing, and the ability of their synapses to change within the Izhikevich architecture.
View Article and Find Full Text PDFNeuroscience
January 2025
Department of Neurology, Binzhou Medical University Hospital, 256603 Binzhou, Shandong, PR China. Electronic address:
Astragaloside Ⅳ (AS-Ⅳ) improved the motor behavior of PD mouse but the alteration of imaging in the PD mice brain was unclear. PD models were established by unilateral injection of ROT into the substantia nigra pars compacta (SNc) of mice. AS-Ⅳ (4 mg/kg) was intraperitoneally injected once a day for 14 days.
View Article and Find Full Text PDFiScience
January 2025
IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy.
Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institute of Pediatrics, National Children's Medical Center, Children's Hospital, Fudan University, Shanghai, 200032, China.
Focal cortical dysplasia (FCD) is a highly heterogeneous neurodevelopmental malformation, the underlying mechanisms of which remain largely elusive. In this study, personalized dorsal and ventral forebrain organoids (DFOs/VFOs) are generated derived from brain astrocytes of patients with FCD type II (FCD II). The pathological features of dysmorphic neurons, balloon cells, and astrogliosis are successfully replicated in patient-derived DFOs, but not in VFOs.
View Article and Find Full Text PDFSci Rep
December 2024
State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing, 210096, China.
Microelectrode arrays (MEAs) have been widely used in studies on the electrophysiological features of neuronal networks. In classic MEA experiments, spike or burst rates and spike waveforms are the primary characteristics used to evaluate the neuronal network excitability. Here, we introduced a new method to assess the excitability using the voltage threshold of electrical stimulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!