Ecosystems are complex networks of interacting individuals co-evolving with their environment. As such, changes to an interaction can influence the whole ecosystem. However, to predict the outcome of these changes, considerable understanding of processes driving the system is required. Synthetic biology provides powerful tools to aid this understanding, but these developments also allow us to change specific interactions. Of particular interest is the ecological importance of mutualism, a subset of cooperative interactions. Mutualism occurs when individuals of different species provide a reciprocal fitness benefit. We review available experimental techniques of synthetic biology focused on engineered synthetic mutualistic systems. Components of these systems have defined interactions that can be altered to model naturally occurring relationships. Integrations between experimental systems and theoretical models, each informing the use or development of the other, allow predictions to be made about the nature of complex relationships. The predictions range from stability of microbial communities in extreme environments to the collapse of ecosystems due to dangerous levels of human intervention. With such caveats, we evaluate the promise of synthetic biology from the perspective of ethics and laws regarding biological alterations, whether on Earth or beyond. Just because we are able to change something, should we?
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6463046 | PMC |
http://dx.doi.org/10.3390/life9010015 | DOI Listing |
Biotechnol Notes
November 2024
NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, Singapore.
Biotechnol Notes
November 2024
Department of Chemical Engineering, Tsinghua University, Beijing 100084, China.
Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
January 2025
Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences, East China Normal University, Shanghai, China.
mRNA delivery has emerged as a transformative approach in biotechnology and medicine, offering a versatile platform for the development of novel therapeutics. Unlike traditional small molecule drugs or protein-based biologics, mRNA therapeutics have the unique ability to direct cells to generate therapeutic proteins, allowing for precise modulation of biological processes. The delivery of mRNA into target cells is a critical step in realizing the therapeutic potential of this technology.
View Article and Find Full Text PDFBMC Infect Dis
January 2025
Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia.
Candida lusitaniae is one of the fungal species which causes serious health illnesses including peritonitis, vaginitis and fungemia, among others. Several antifungal drugs have been designed to tackle its infections but their efficacy is still questionable due to their associated side effects. Hence, there is a need to design those drugs which possess comparatively higher degree of therapeutic potential.
View Article and Find Full Text PDFWorld J Microbiol Biotechnol
January 2025
Institute of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1 St, Rzeszow, 35-310, Poland.
Phthalic acid esters are widely used worldwide as plasticizers. The high consumption of phthalates in China makes it the world's largest plasticizer market. The lack of phthalic acid ester's chemical bonding with the polymer matrix facilitates their detachment from plastic products and subsequent release into the environment and causes serious threats to the health of living organisms.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!