Pastures are botanically diverse and difficult to characterize. Digital modeling of pasture biomass and quality by non-destructive methods can provide highly valuable support for decision-making. This study aimed to evaluate aerial and on-ground methods to characterize grass ley fields, estimating plant height, biomass and volume, using digital grass models. Two fields were sampled, one timothy-dominant and the other ryegrass-dominant. Both sensing systems allowed estimation of biomass, volume and plant height, which were compared with ground truth, also taking into consideration basic economical aspects. To obtain ground-truth data for validation, 10 plots of 1 m² were manually and destructively sampled on each field. The studied systems differed in data resolution, thus in estimation capability. There was a reasonably good agreement between the UAV-based, the RGB-D-based estimates and the manual height measurements on both fields. RGB-D-based estimation correlated well with ground truth of plant height ( R 2 > 0.80 ) for both fields, and with dry biomass ( R 2 = 0.88 ), only for the timothy field. RGB-D-based estimation of plant volume for ryegrass showed a high agreement ( R 2 = 0.87 ). The UAV-based system showed a weaker estimation capability for plant height and dry biomass ( R 2 < 0.6 ). UAV-systems are more affordable, easier to operate and can cover a larger surface. On-ground techniques with RGB-D cameras can produce highly detailed models, but with more variable results than UAV-based models. On-ground RGB-D data can be effectively analysed with open source software, which is a cost reduction advantage, compared with aerial image analysis. Since the resolution for agricultural operations does not need fine identification the end-details of the grass plants, the use of aerial platforms could result a better option in grasslands.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6387457 | PMC |
http://dx.doi.org/10.3390/s19030535 | DOI Listing |
Sci Rep
January 2025
Department of Forest Engineering, Faculty of Agronomy and Forest Engineering, Eduardo Mondlane University, P.O. Box 257, Maputo, Mozambique.
Seasonally dry tropical woodlands are vital for climate change mitigation, yet their full potential in carbon storage remains poorly understood. This is largely due to the lack of species-specific allometric models tailored to these ecosystems. To address this knowledge gap, this study aimed to develop species-specific biomass allometric equations (BAEs) for accurately estimating both above- and below-ground biomass of Colophospermum mopane (J.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran.
Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.
View Article and Find Full Text PDFAnn Bot
January 2025
Institute of Botany, Czech Academy of Sciences, Dukelská 135, 379 01 Třeboň, Czech Republic.
Background And Aims: Understanding interspecific differences in plant growth rates and their internal and external drivers is key to predicting species responses to ongoing environmental changes. Annual growth rates vary among plants based on their ecological preferences, growth forms, ecophysiological adaptations, and evolutionary history. However, the relative importance of these factors remains unclear, particularly in high-mountain ecosystems experiencing rapid changes.
View Article and Find Full Text PDFFront Microbiol
January 2025
Yunnan Academy of Tobacco Science, Kunming, China.
The effects of rhizosphere microorganisms on plant growth and the associated mechanisms are a focus of current research, but the effects of exogenous combined inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on seedling growth and the associated rhizosphere microecological mechanisms have been little reported. In this study, a greenhouse pot experiment was used to study the effects of single or double inoculation with AM fungi () and two PGPR ( sp., sp.
View Article and Find Full Text PDFACS Omega
January 2025
Laboratory of Biological Control of Plant Disease and Laboratory of Plant Biotechnology, Institute of Biotechnology, University of Caxias do Sul, Rua Francisco Getúlio Vargas, 1130, Petrópolis, Caxias do Sul, Rio Grande do Sul 95070-560, Brazil.
This work aimed to evaluate the potential of spp. in the bioremediation of herbicides and biostimulation of plants in herbicide-contaminated soils. In the first phase, the experiment followed a completely randomized design in a 4 × 3 × 4 factorial scheme with five replications, four strains of spp.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!